
Integrated Model-checking for the Design of Safe and
Efficient Distributed Software Commissioning

Hélène Coullon, associate prof. IMT Atlantique, Inria, LS2N - Nantes France
Claude Jard, prof. Université de Nantes, LS2N - Nantes, France
Didier Lime, associate prof. Ecole Centrale, LS2N - Nantes France

2019-12-04 iFM’19 Bergen Norway



Distributed software

Data Service
A B C

a a b b

C

• Modules, services or components
• running on distributed machines interconnected by a network

• Connections, communications
• cooperating to get a result

• Examples: micro-services- and service-oriented software systems, MPI applications,
CORBA applications, systems of systems etc.

1/23



Component management

Code (development) 3

• modular code and communications

• software engineering pratices (composition, code reuse, etc.)

DevOps (management) 7

• Control APIs on the component (start, backup etc.)

• Configuration files to get infra parameters (sysadmins)

• README file (or webpage)
• uses both control APIs and configuration files
• description of procedures (install, stop, update etc.)
• commissioning procedure: requirements (libraries, packages etc.), configurations,

order of execution, testing the commissioning sucess
2/23



Distributed software commissioning

devA

A

READMEA

APIsA

CONFsA devB

B

READMEB

APIsB

CONFsB

C

READMEC

APIsC

CONFsCdevC

sysadminD

• devA, devB and devC write the APIs, the configuration files and the README for
their components

• sysadminD has to
• coordinate the READMEs of all components
• webpages/scripts to explain this kind of complex commissionings (example)

3/23

https://www.linode.com/docs/databases/hadoop/install-configure-run-spark-on-top-of-hadoop-yarn-cluster/


Challenges

• Languages and models for distributed software commissioning
• Software Engineering (SE) properties: composition, code-reuse, separation of

concerns etc.

• Safety of distributed software commissioning

• Efficiency of distributed software commissioning

4/23



Table of contents

Background - the Madeus model

Safe and Efficient Software Commissioning with MADA

Conclusion and perspectives

5/23



Background - the Madeus model



Madeus (1/2)

• devapache and devmdb design their respective component commissioning

• sysadmin connect compatible ports of components to build the overall
commissioning of Apache/MariaDB

• separation of concerns: devassembly does not need to know details about each
component

• automatic coordination, correct order of execution, automatic parallelism

6/23



Madeus (2/2)

7/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Madeus execution

8/23



Few results

• "OpenStack is a cloud operating system that controls large pools of compute,
storage, and networking resources throughout a datacenter"

• Kolla-ansible commissioning of OpenSatck (36 services gathered in 11
components, deployed on three nodes).

• up to 60% performance gain compared to Kolla-ansible

9/23



Safe and Efficient Software
Commissioning with MADA



MADA

Hypothesis: the commissioning of a distributed software system already exists and the
developer wants to use Madeus to enhance its efficiency

1. how to divide existing intricate commissioning scripts in interesting subtasks to
introduce parallelism?

2. how to find correct dependencies between commissioning tasks?

3. how to avoid safety issues such as deadlocks, wrong order of configurations?

Goal
Study the use of model checking to help in the three above challenges in the design of
safe and efficient distributed software commissioning

10/23



Overview

Sysadmin

Madeus assembly Properties

TimePN compiler TCTL compiler

Model Checker Translator

writes

11/23



Time Petri Nets (1/2)

Madeus (1) Petri net (1) Madeus (2) Petri net (2)

P’

d1 d2

d ′
1

P

enterP

d1 d2

exitP

d ′
1

P

t1

d1

d ′
1

P’

d1

startt1

t1

endt1

d ′
1

Madeus (3) Petri net (3) Madeus (4) Petri net (4)

P

P’

t

d

d ′
port1

port2

d

startt

t

endt

port1_in_useport1_not_used

port2

port1

d ′

P
port2

enterP

P port2

12/23



Time Petri Nets (2/2)

Madeus (5) Petri net (5)

port1

P1 P2

P ′
1 P ′

2

t11

t12
t2

di1 di2

do11 do12 do2

d ′
i1

d ′
i21 d ′

i22

d ′
o1

d ′
o2

enterP1

P1

exitP1

do11

startt1

t11

endt1

d ′
i1

enterP′
1

P ′
1

exitP′
1

exit ′P′
1

d ′
o1

do12

startt12

t12

endt12

d ′
i21

enter ′P2

P ′
2

exitP′
2

exit ′P′
2

d ′
o2

d ′
i22

endt2

t2

startt2

do2

exitP2

P2

enterP2

port1

port1_not_used

port1_in_use

1

2 2

13/23



Properties (1/2)

• Time Petri nets are used
• intervals of time given for each transition representing a Madeus transition

1 def set_interval(self , component , transition , min , max)
2 def add_deployment(self , name , dict_componentsplaces)

• High Abstraction Level Properties (HALP)
• qualitative properties
• quantitative properties

1 def deployability(self , deployment_name , with_intervals)
2 def sequentiality(self , ordered_list_components_transition)
3 def forbidden(self , list_marked , list_unmarked)
4 def parallelism(self , full_assembly , list_components)
5 def gantt_boundaries(self , deployment_name , mini , maxi , critical)

14/23



Properties (2/2)

HALP automatically transformed to TCTL (Time Computational Tree Logic) formulae

Qualitative properties

• deployability −→ inevitability

• sequentiality −→ observer subnet + invariant

• forbidden −→ observer subnet + invariant

Quantitative properties

• parallelism −→ max(
∑

(reachable markings))

• gantt boundaries: min/max costs + causality in the trace to get the critical path

15/23



Evaluation (1/4)

5 versions of the OpenStack commissionining successively enhanced with MADA

v0

deadlock

v1

nova improvement

v2

nova wrong dep

v3

mbd improvement

v4

neutron improvement

MADA MADA MADA MADA MADA

16/23



Evaluation (2/4)

17/23



Evaluation (3/4)

18/23



Evaluation (4/4)

Experiments conducted with the model checker Romeo

0-deadlock 1-naive 2-nova 3-nova 4-nova-mdb

Madeus places 27 27 28 28 29
Madeus transitions 22 22 25 25 28
Madeus connections 30 30 30 30 30
Petri net places 113 113 124 124 134
Petri net transitions 75 75 84 84 92
Transformation time (ms) 1.6 1.6 1.8 1.7 1.5

Deployability False True True True True
Resolution time (s) 0 41.6 78.7 88.7 152.6

Parallelism nova - 1 2 2 2
Resolution time (s) - 42.1 82.7 93.6 154.3
Parallelism full - 10 11 11 12
Resolution time (s) - 43.2 86.1 98.4 162.9
Gantt & critical path - Fig Fig Fig Fig
Resolution time (s) - 130.1 266.9 275.4 588.1
Boundaries - [575,615] [518,554] [400,423] [377,398]
Resolution time (s) - 130.1, 128.8 266.9, 269.7 275.4, 267.6 588.1, 580.8

19/23

http://romeo.rts-software.org/


Discussion

• Separation between the design of a Madeus commissioning and the real set of
commissioning commands with its associated technical issues

• Same critical paths found on real experiments on Grid’5000

• No need for precise intervals but good order of magnitude between transitions
• errors introduced on intervals
• up to 95% of errors on short tasks, 40% of errors on bigger tasks
• keep the same order of magnitude

20/23



Conclusion and perspectives



Conclusion

• background on the Madeus model
• separation of concerns
• efficiency

• MADA to help in the design of Madeus commissionings
• automatic transformation to equivalent Time Petri nets
• high abstraction level properties for the user
• qualitative and quantitative properties
• evaluated on a real use-case

21/23



Perspectives

• Concerto: A generalization of Madeus to dynamic reconfiguration of ditributed
software systems. Phd student: Maverick Chardet

• VeRDi: Verified Reconfiguration Driven by execution
• Simon Robillard (Postdoc): SMT solvers for verification and synthesis of

reconfiguration scripts in Concerto

22/23



Integrated Model-checking for the Design of Safe and Efficient Distributed
Software Commissioning

Thank you !

Questions?

23/23


	Background - the Madeus model
	Safe and Efficient Software Commissioning with MADA
	Conclusion and perspectives

