
31/10
/20181

TITRE DE LA PRÉSENTATION - MENU 
« INSERTION / EN-TÊTE ET PIED DE PAGE »

TOWARD EFFICIENT AND SAFE DISTRIBUTED
SOFTWARE DEPLOYMENT

Maverick Chardet
Hélène Coullon
Christian Perez

Dimitri Pertin
Inria Orange Lab 2018-10-30



31/10
/20182

TITRE DE LA PRÉSENTATION - MENU « INSERTION / EN-TÊTE ET PIED DE PAGE »

1. MADEUS AND MAD



MOTIVATION - DEPLOYMENT

Deployment

1. Placement: mapping modules / components to resources
Ø Bin-packing problems

2. Software commissioning / configuration
Ø Allocate resources
Ø Create and configure components / modules
Ø Component interactions and dependencies

3



STATE OF THE ART

Academic: Deployware, TOSCA, Aeolus, Fractal, GCM, GCM/Proactive
Production tools: Chef, Puppet, Ansible, Juju, Kubernetes

Most component models are made to:
• Clearly separate the different components/functionalities of applications
• Describe the functional interactions between components
• Embed predefined life-cycles for components (i.e. Create, configure, 

destroy)

Programmable life-cycle
• Improve flexibility and expressivity (granularity choice)

Automatic temporal coordination of life-cycles
• Improve safety (control)
• Introduction of automatic parallelism (performance) 

Automatic Parallelism at 3 levels
1. Same-Component-Multiple-Host (SCMH)
2. Inter-component
3. Inter-life-cycles

4



STATE OF THE ART

Prog. Life-cycle Temp. Coordination Auto. Parallelism

Deployware No Yes (fixed order) Inter-component

Fractal, GCM, GCM/proactive Yes No Inter-component

TOSCA Yes Yes Inter-component

Aeolus (Blender) Yes Yes Inter-life-cycles

Prog. Life-cycle Temp. Coordination Auto. Parallelism

Chef, Puppet, Ansible Yes Yes (seq order) SCMH

Juju Yes Yes Inter-component

Kubernetes No Yes (fixed order) Inter-component

5

• Madeus is a low-level deployment model
• Any existing component can be encapsulated in Madeus
• Madeus is inspired from Aeolus
• Madeus focuses on performance

• Intra-component parallelism



MADEUS – COMPONENT

Component
• Usually corresponds to a module of a 

distributed system or app
• Has its own life-cycle

6



MADEUS – PLACE

Place
• A “milestone” in the component life-cycle
• Can act as a synchronization mark if multiple 

actions are performed in parallel

7



MADEUS – TRANSITION

Transition
• Bound to an action (i.e. a function)

8



MADEUS – DOCK

Dock
• Allows to handle synchronization of parallel 

actions
• Attached to a place
• Connection point for transitions
• Two kinds of docks: input and output

9



MADEUS – INPUT PORT

Input port
• Bound to transitions that require some data or 

service
• These transitions can only be triggered when 

the port is connected

10



MADEUS – OUTPUT PORT

Output port
• Data output port: provides data / acts as a 

register (e.g. IP address)
• Service output port: indicates that a service is 

provided by the component 

11



MADEUS – ASSEMBLY & CONFIGURATION

Token
• Represents the state in the life-cycle of 

the component
• Either present on or absent of each 

place, dock and transition

Assembly
• Set of components instances
• Connections between their ports
• Similar to a main function

Configuration <mk, ebl, val>
• mk marking = location of tokens
• ebl enabled = wether or not 

connections are enabled
• val values = values stored in the data 

output ports

12



MADEUS – SEMANTICS

7 semantics rules

1. Leaving a place
2. Firing a transition
3. Ending a transition
4. Joining a place

5. Enabling use-provide connection
6. Disabling use-provide connection
7. Enabling data connection

Madeus: A formal deployment model. Maverick Chardet, Hélène Coullon, Christian Perez, 
Dimitri Pertin. 4PAD symposium @ HPCS 2018.

13



MADEUS APPLICATION DEPLOYER

MAD
• Implementation of the Madeus model
• Written in Python
• v0.2 Open Source GPL v3
• Available at https://gitlab.inria.fr/Madeus/mad/tree/mad_new_implementation
• Documentation at https://mad.readthedocs.io/en/latest/

14

https://gitlab.inria.fr/Madeus/mad/tree/mad_new_implementation
https://mad.readthedocs.io/en/latest/


EVALUATION – CASE STUDY

OpenStack
• Large distributed software
• Modular (component) architecture composed of more than 30 projects
• Each project composed of multiple services
• More than 150 services
• Ansible, Juju, Kubernetes, TripleO etc. has been used to deploy

OpenStack

15



EVALUATION – CASE STUDY

Kolla-Ansible OpenStack Deployment
• Our deployment reference is the Kolla project

• Production tool to deploy OpenStack ONLY
• Deploy a containerized minimal OpenStack by using Ansible
• 11 projects, 36 services
• Deployment on three nodes: 

• controller node (16 services)
• Network node (11 services) 
• Compute node (9 services)

16



EVALUATION – EXPRESSIVITY

Kolla-ansible deployment in Madeus
• 11 Madeus components
• Component dependencies

• Use-provide
• Data 

17



EVALUATION – EXPRESSIVITY

Places Transitions Ports

Total 32 30 47

18



EVALUATION – PERFORMANCE

Cluster CPU Memory Network

Taurus (Lyon) 2 x 6 cores / CPU 32 GB 10 Gbps

Compute Network Control

Number of images 9 11 16

Total size (MB) 2767 2705 4916

Kolla-ansible OpenStack Deployment
• Deployment versions

• spmd-1t = Kolla-ansible
• dag-2t = Aeolus (simulated with Madeus, no parallel transitions)
• dag-nt = Madeus

• Docker image management
• Remote (Docker Hub)
• Local (dedicated local registry in the cluster)
• Cached (all nodes already store docker images)

19



EVALUATION – PERFORMANCE

• Up to 58% gain compared to Kolla-Ansible
• Up to 32% gain compared to Aeolus

20



EVALUATION – PERFORMANCE

00:04 00:06 00:08 00:10 00:12 00:14 00:16

Facts deploy

Common deploy

HAProxy deploy

MemCached deploy

MariaDB deploy

RabbitMQ deploy

Keystone deploy

Glance deploy

Nova deploy

OpenVSwitch deploy

Neutron deploy

00:58 01:00 01:02 01:04

MemCached pull

RabbitMQ pull

MariaDB pull

Keystone pull

Facts deploy

OpenVSwitch pull

HAProxy pull

Glance pull

Neutron pull

Nova pull

MemCached deploy

RabbitMQ deploy

OpenVSwitch deploy

HAProxy deploy

Common deploy

MariaDB deploy

Keystone deploy

Glance deploy

Neutron deploy

Nova deploy

02:09 02:10 02:11 02:12 02:13 02:14 02:15

Facts deploy
MariaDB pull
Keystone pull

Glance pull
Neutron pull

MemCached deploy
Nova pull

Common ktb_deploy
RabbitMQ deploy

OpenVSwitch deploy
Nova config

HAProxy deploy
MariaDB bootstrap

Common deploy
MariaDB restart

MariaDB register
MariaDB check

Glance config
Nova create_db

Neutron config
Nova upgrade_api_db

Keystone deploy
Nova upgrade_db

Glance register
Nova restart

Neutron register
Nova register

Glance deploy
Nova simple_cell_setup

Neutron deploy

Ansible Aeolus

Madeus

21



CONCLUSION 22

Conclusion

• New formal deployment model Madeus

• Madeus adds a level of parallelism intra-component
• Madeus increases the performance of the deployment

• Evaluated on OpenStack in comparison to Kolla-Ansible

Perspectives

• Model Checking of Madeus assemblies, Coq formalization of Madeus

• Performance model of Madeus and scheduling algorithms

• Decentralization of Madeus

• Higher abstraction level tools: MAD-Ansible etc.

• Extension of Madeus to reconfiguration

Dimitri Pertin

ex-Postdoc
somwhere in Asia

Maverick Chardet

PhD student
Christian Perez

Research director Inria



31/10
/201823

TITRE DE LA PRÉSENTATION - MENU « INSERTION / EN-TÊTE ET PIED DE PAGE »

2. MADEUS-B



MOTIVATION - RECONFIGURATION

• Rolling upgrade
• Dynamic information regarding the infrastructure

• Fault tolerance
• Scalability
• Performance models

• Dynamic external data events
• IoT, smart-* applications
• Dynamic energy considerations
• Dynamic security considerations

Deployment = specific reconfiguration

24



MOTIVATION – AUTO RECONFIGURATION

Why?

Where?

When?

What?

How?

How?

Why?

decision

• Reconfiguration Model / Knowledge: « what »?
• Reconfiguration Execution: « how »?

Ø We consider the decision already done and known

25



RECONFIGURATION MODEL 26

Introduction of behaviors in Madeus components

• A component can have as many behaviors 
as the developer needs

• A single behavior is active at runtime
• The behavior can be switched at runtime 

according to semantics rules



RECONFIGURATION MODEL 27

Assemblies



RECONFIGURATION EXECUTION 28

Reconfiguration language and semantics

behaviorChange (proxy, read-only)
wait (proxy)
disconnect (sql_write, db1, proxy)
new (db2 : Db)
new (transferer : Transferer)
connect (file_out, db1, transferer)
connect (file_in, transferer, db2)
behaviorChange (transferer, run)
behaviorChange (db2, install)
behaviorChange (db1, backup)
wait (db2)
behaviorChange (proxy, no-service)
wait (proxy)
disconnect (sql_read, db1, proxy)
connect (sql_read, db2, proxy)
connect (sql_write, db2, proxy)
behaviorChange (proxy, install)
behaviorChange(transferer, stop)
wait (transferer)
behaviorChange(db1, uninstall)
wait (db1)
del (db1)
del (transferer)

• Directly use behaviors in the reconfiguration
• Asynchronism in the reconfiguration (efficiency)



SEPARATION OF CONCERNS 29

Improve separation of concerns

Component developer

Assembly and reconfiguration
designer

?



SEPARATION OF CONCERNS 30

Behavioral interfaces

Assembly and reconfiguration
designer



RECONFIGURATION EXECUTION 31

behaviorChange (proxy, read-only)
wait (proxy)
disconnect (sql_write, db1, proxy)
new (db2 : Db)
new (transferer : Transferer)
connect (file_out, db1, transferer)
connect (file_in, transferer, db2)
behaviorChange (transferer, run)
behaviorChange (db2, install)
behaviorChange (db1, backup)
wait (db2)
behaviorChange (proxy, no-service)
wait (proxy)
disconnect (sql_read, db1, proxy)
connect (sql_read, db2, proxy)
connect (sql_write, db2, proxy)
behaviorChange (proxy, install)
behaviorChange(transferer, stop)
wait (transferer)
behaviorChange(db1, uninstall)
wait (db1)
del (db1)
del (transferer)



CONCLUSION 32

Conclusion
• Introduction of reconfiguration inside Madeus
• We expect good performances
• Under validation on real reconfiguration use-cases (OpenStack)

Perspectives
• Formalization of the behaviors and the reconfiguration language
• Equivalence proof for behavioral interfaces
• Increase reconfiguration capabilities

Maverick Chardet
PhD student

Christian Perez
Research director Inria

18 months postdoc 18 months engineer

VeRDi project
Pays de La Loire



31/10
/201833

TITRE DE LA PRÉSENTATION - MENU « INSERTION / EN-TÊTE ET PIED DE PAGE »

THANK YOU !


