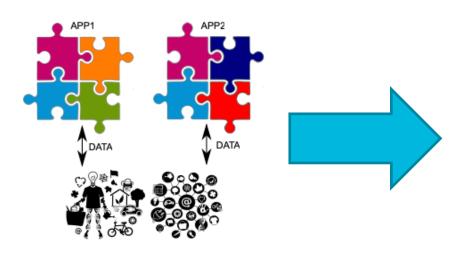


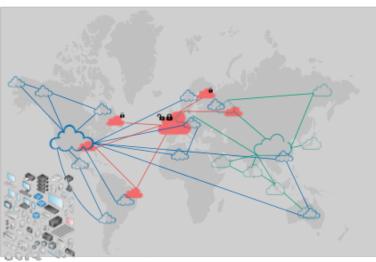
IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

LABORATOIRE DES SCIENCES DU NUMÉRIQUE DE NANTES

TOWARD EFFICIENT AND SAFE DISTRIBUTED SOFTWARE DEPLOYMENT

Maverick Chardet Hélène Coullon Christian Perez Dimitri Pertin Inria Orange Lab 2018-10-30


1. MADEUS AND MAD



MOTIVATION - DEPLOYMENT

Deployment

- 1. Placement: mapping modules / components to resources
 - Bin-packing problems
- 2. Software commissioning / configuration
 - Allocate resources
 - Create and configure components / modules
 - Component interactions and dependencies

STATE OF THE ART

Most *component models* are made to:

- Clearly separate the different components/functionalities of applications
- Describe the functional interactions between components
- Embed predefined life-cycles for components (*i.e.* Create, configure, destroy)

Programmable life-cycle

• Improve *flexibility* and *expressivity* (granularity choice)

Automatic temporal coordination of life-cycles

- Improve <u>safety</u> (control)
- Introduction of *automatic parallelism* (performance)

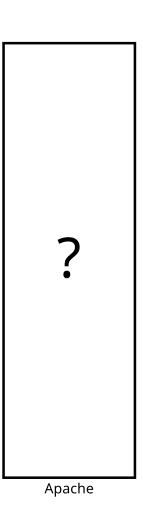
Automatic Parallelism at 3 levels

- 1. Same-Component-Multiple-Host (SCMH)
- 2. Inter-component
- 3. Inter-life-cycles

Academic: Deployware, TOSCA, Aeolus, Fractal, GCM, GCM/Proactive *Production tools:* Chef, Puppet, Ansible, Juju, Kubernetes

STATE OF THE ART

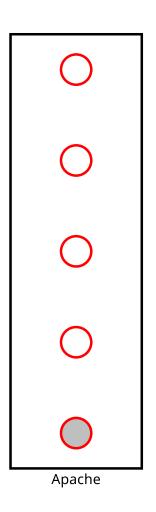
	Prog. Life-cycle	Temp. Coordination	Auto. Parallelism
Deployware	No	Yes (fixed order)	Inter-component
Fractal, GCM, GCM/proactive	Yes	No	Inter-component
TOSCA	Yes	Yes	Inter-component
Aeolus (Blender)	Yes	Yes	Inter-life-cycles


	Prog. Life-cycle	Temp. Coordination	Auto. Parallelism
Chef, Puppet, Ansible	Yes	Yes (seq order)	SCMH
Juju	Yes	Yes	Inter-component
Kubernetes	No	Yes (fixed order)	Inter-component

- Madeus is a low-level deployment model
- Any existing component can be encapsulated in Madeus
- Madeus is inspired from **Aeolus**
- Madeus focuses on performance
 - Intra-component parallelism

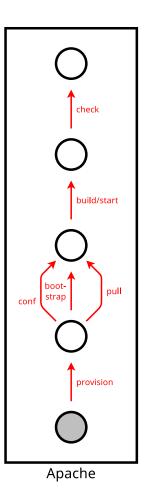
Component

- Usually corresponds to a *module* of a distributed system or app
- Has its own life-cycle



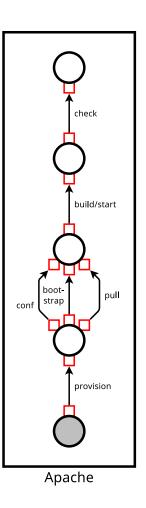
MADEUS – PLACE

Place

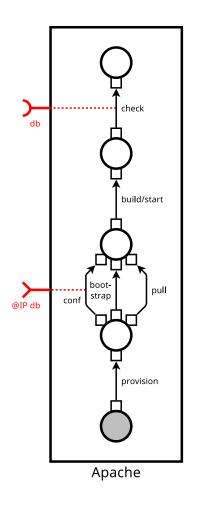

- A "*milestone*" in the component life-cycle
- Can act as a *synchronization* mark if multiple actions are performed in parallel

Transition

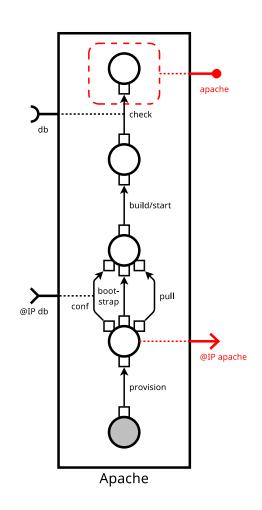
• Bound to an action (i.e. a function)

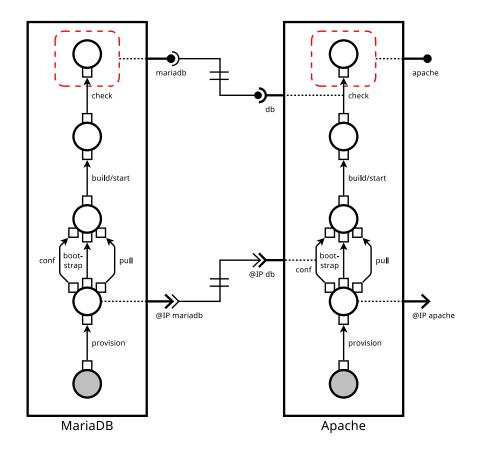


MADEUS – DOCK


Dock

- Allows to handle synchronization of parallel actions
- Attached to a place
- Connection point for transitions
- Two kinds of docks: *input* and *output*


- Bound to transitions that require some data or service
- These transitions can only be triggered when the port is *connected*



- Data output port: provides data / acts as a register (*e.g.* IP address)
- Service output port: indicates that a service is provided by the component

MADEUS – ASSEMBLY & CONFIGURATION

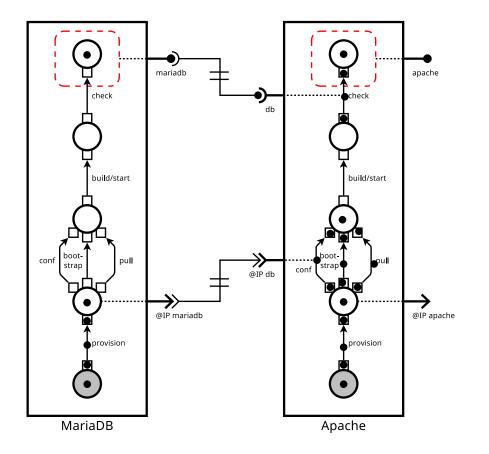
Token

 Represents the state in the life-cycle of the component

12

• Either present on or absent of each place, dock and transition

Assembly


- Set of components instances
- Connections between their ports
- Similar to a *main* function

Configuration <mk, ebl, val>

- *mk* marking = location of tokens
- *ebl* enabled = wether or not connections are enabled
- val values = values stored in the data output ports

MADEUS – SEMANTICS

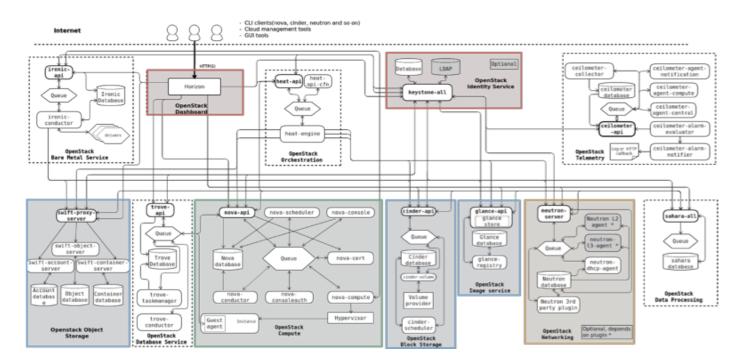
7 semantics rules

- **1**. Leaving a place
- 2. Firing a transition
- 3. Ending a transition
- 4. Joining a place
- 5. Enabling use-provide connection
- 6. Disabling use-provide connection
- 7. Enabling data connection

Madeus: A formal deployment model. Maverick Chardet, Hélène Coullon, Christian Perez, Dimitri Pertin. 4PAD symposium @ HPCS 2018.

MADEUS APPLICATION DEPLOYER

MAD

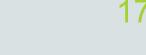

- Implementation of the Madeus model
- Written in Python
- v0.2 Open Source GPL v3
- Available at https://gitlab.inria.fr/Madeus/mad/tree/mad_new_implementation
- Documentation at https://mad.readthedocs.io/en/latest/

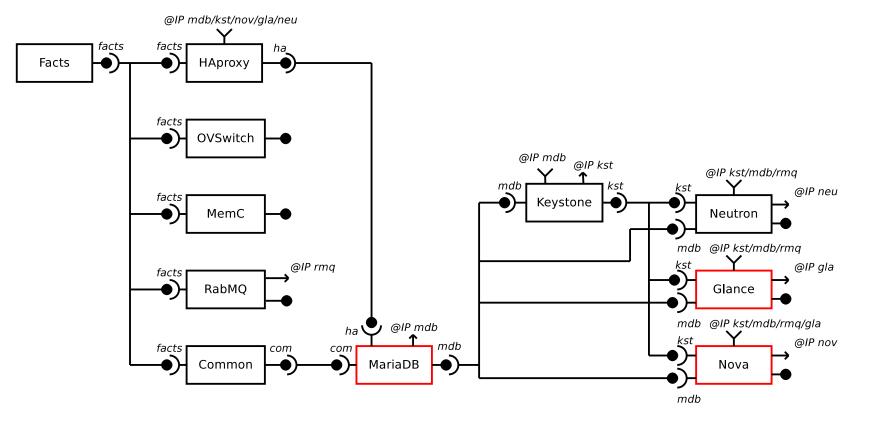
illab Projects - Groups - Activity Milestones Snippets		🖸 v This project Search Q. D? 🕅 🔂 😰 🍈 v
M mad	Madeus > mad > Repository	
🖨 Project	mad_new.implem v mad / + v	History Q. Find file Web IDE 🗢 👻
() Repository	Initial version of setup.py Christian Perez authored 6 days	50ef49f1 Wy
Files	# MAD	Docs + Getting Started View page source
Commits	Name Search docs	
Branches	toos	Getting Started
Tags Contributors	examples CONTENTS:	-
	LICENSE Installation	In this section we will study the example examples/user_providers/deploy_user_provider.py .
Graph Compare	Getting Started Getting Started Getting Started	In MAD a deployment process is described under the form of an assembly of components. A
Charts	Assembly.py	component represents a software part to deploy. An assembly of components represents how components are connected through their dependencies.
D issues 0	Advanced examples Component.py Developers documentation	The studied examples is composed of three different files:
	🜐 twilio	 provider.py the provider component user.py the user component
	SMS API for web & mobile applications	 deploy_user_provider the assembly of component de deploy and its automatic deployment
	Make and receive SMS messages in your applications with just a few lines of code .	First, the description of a component deployment will be explained. Second, the description of an assembly will be detailed.
	Sporsored - Adv served ethically	Component
IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom		The deployment of a component is described as a kind of petri net structure. The deployement of a component is composed of:

EVALUATION – CASE STUDY

OpenStack

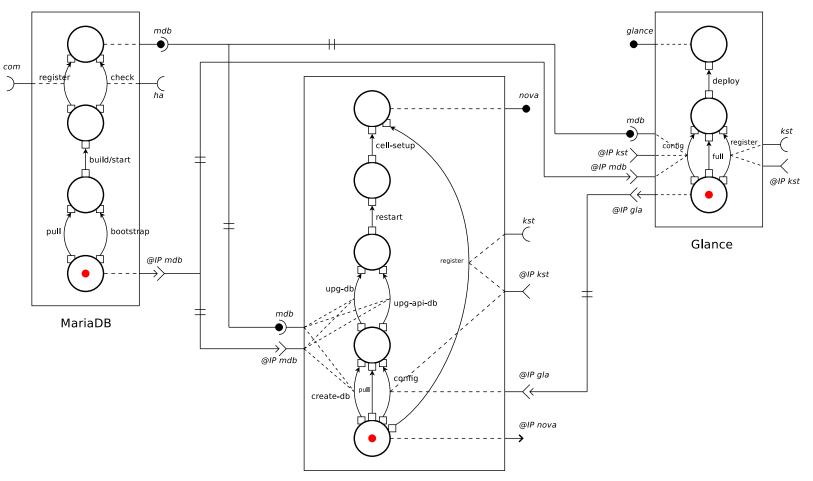
- Large distributed software
- Modular (component) architecture composed of more than 30 projects
- Each project composed of multiple services
- More than 150 services
- Ansible, Juju, Kubernetes, TripleO etc. has been used to deploy OpenStack




Kolla-Ansible OpenStack Deployment

- Our deployment reference is the Kolla project
 - Production tool to deploy OpenStack ONLY
 - Deploy a containerized minimal OpenStack by using **Ansible**
 - 11 projects, 36 services
 - Deployment on three nodes:
 - controller node (16 services)
 - Network node (11 services)
 - Compute node (9 services)

EVALUATION – EXPRESSIVITY



Kolla-ansible deployment in Madeus

- 11 Madeus components
- Component dependencies
 - Use-provide
 - Data

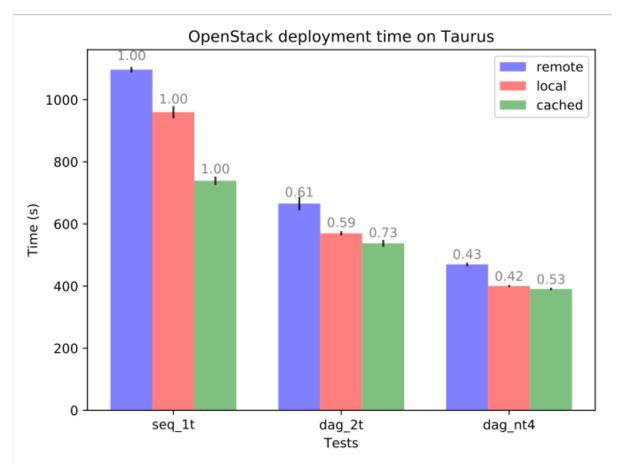
EVALUATION – EXPRESSIVITY

Nova

	Places	Transitions	Ports
Total	32	30	47

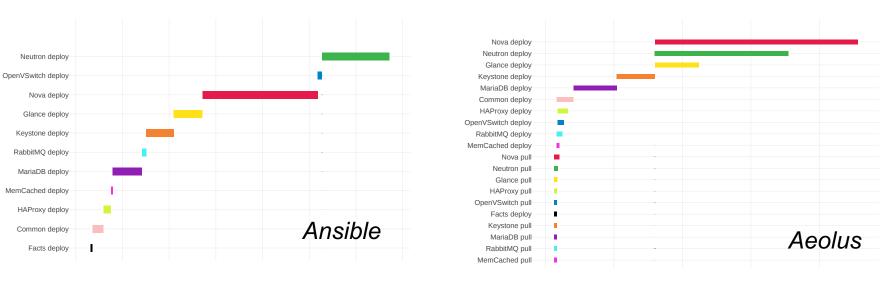
Cluster	CPU	Memory	Network
Taurus (Lyon)	2 x 6 cores / CPU	32 GB	10 Gbps

	Compute	Network	Control
Number of images	9	11	16
Total size (MB)	2767	2705	4916


Kolla-ansible OpenStack Deployment

- Deployment versions
 - spmd-1t = Kolla-ansible
 - dag-2t = Aeolus (simulated with Madeus, no parallel transitions)
 - dag-nt = Madeus
- Docker image management
 - *Remote* (Docker Hub)
 - Local (dedicated local registry in the cluster)
 - Cached (all nodes already store docker images)

EVALUATION – PERFORMANCE



- Up to 58% gain compared to Kolla-Ansible
- Up to 32% gain compared to Aeolus

EVALUATION – PERFORMANCE

CONCLUSION

Conclusion

- New formal deployment model Madeus
- Madeus adds a level of parallelism *intra-component*
- Madeus increases the *performance* of the deployment
- Evaluated on OpenStack in comparison to Kolla-Ansible

Perspectives

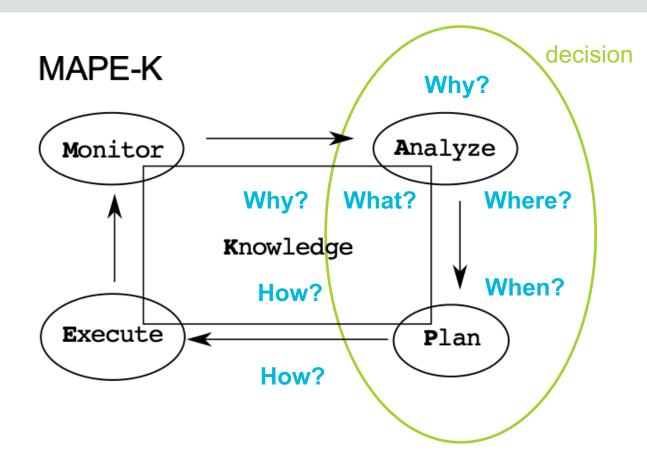
- *Model Checking* of Madeus assemblies, *Coq* formalization of Madeus
- Performance model of Madeus and scheduling algorithms
- Decentralization of Madeus
- Higher abstraction level tools: *MAD-Ansible* etc.
- Extension of Madeus to *reconfiguration*

Dimitri Pertin ex-Postdoc somwhere in Asia

Maverick Chardet PhD student

Christian Perez Research director Inria

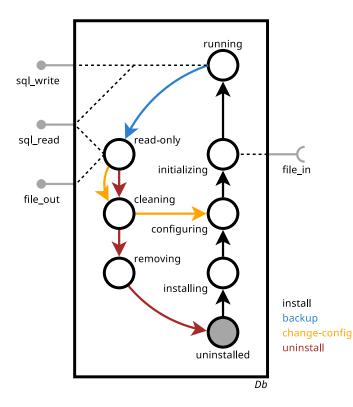
2. MADEUS-B



Deployment = specific reconfiguration

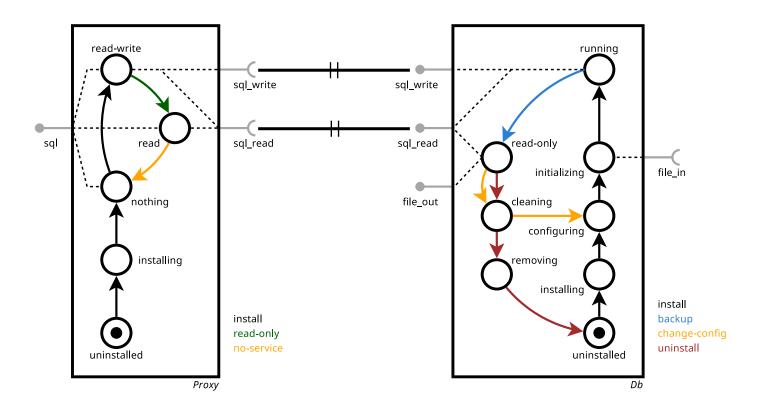
- Rolling upgrade
- Dynamic information regarding the infrastructure
 - Fault tolerance
 - Scalability
 - Performance models
- Dynamic external data events
 - IoT, smart-* applications
 - Dynamic energy considerations
 - Dynamic security considerations

MOTIVATION – AUTO RECONFIGURATION

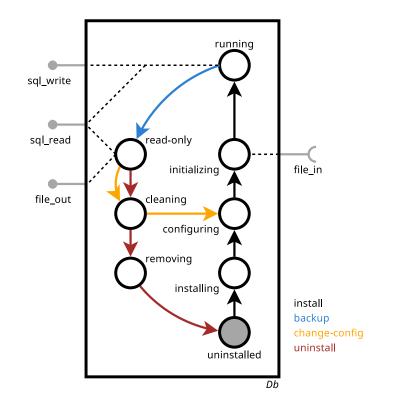


- Reconfiguration Model / Knowledge: « what »?
- Reconfiguration *Execution:* « *how* »?
 - > We consider the *decision already done and known*

RECONFIGURATION MODEL

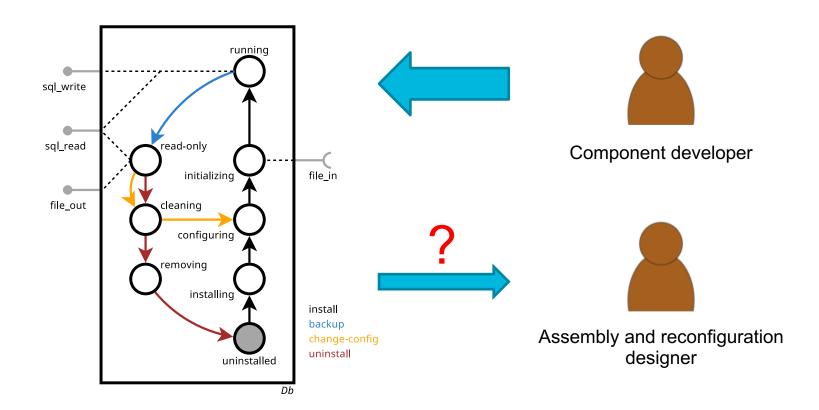

Introduction of behaviors in Madeus components

- A component can have as many behaviors as the developer needs
- A single behavior is active at runtime
- The behavior can be switched at runtime according to semantics rules


RECONFIGURATION MODEL

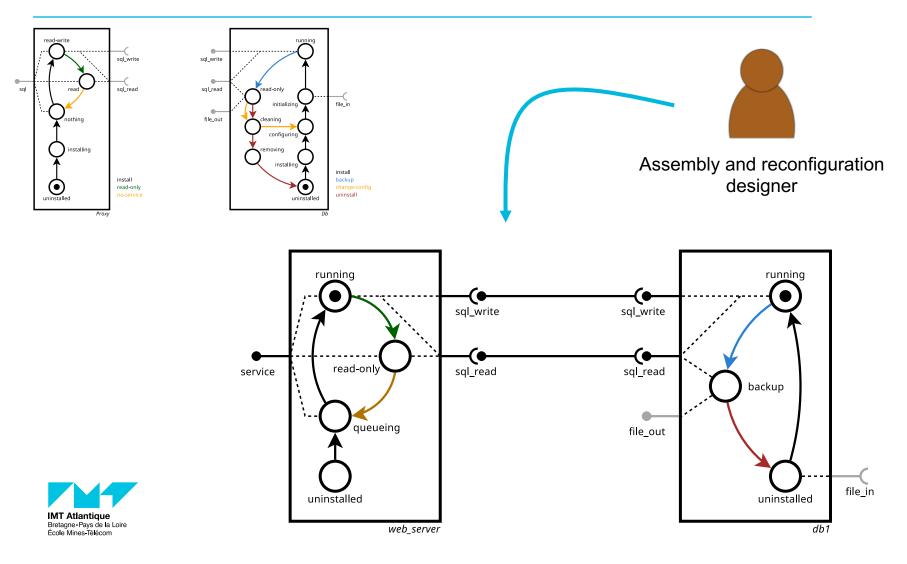
RECONFIGURATION EXECUTION

Reconfiguration language and semantics



- Directly use behaviors in the reconfiguration
- Asynchronism in the reconfiguration (efficiency)

SEPARATION OF CONCERNS

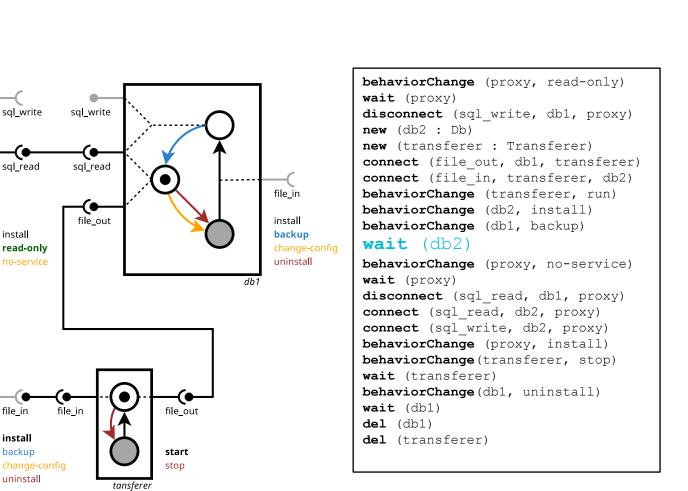

Improve separation of concerns

SEPARATION OF CONCERNS

Behavioral interfaces

RECONFIGURATION EXECUTION

install


file in

install

backup

proxy

db2

sal

sql_write

sql_read

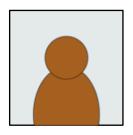
file_out

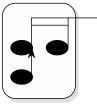
CONCLUSION

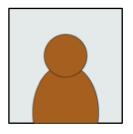
Conclusion

- Introduction of *reconfiguration* inside Madeus
- We expect good performances
- Under validation on real reconfiguration use-cases (OpenStack)

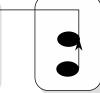
Perspectives


- Formalization of the behaviors and the reconfiguration language
- Equivalence proof for behavioral interfaces
- Increase reconfiguration capabilities


Maverick Chardet PhD student



Christian Perez Research director Inria



18 months postdoc

18 months engineer

VeRDi project Pays de La Loire

THANK YOU !

