
Toward efficient and safe deployment and

reconfiguration of distributed software

68NQRT seminar - IRISA

Hélène Coullon

2018-12-13

Assistant professor at IMT Atlantique, Inria reasearch chair, LS2N



Table of contents

1. Introduction

2. Deployment

Automated deployment

State of the art

Madeus

Verification and Madeus

3. Reconfiguration

Context

Madeus++

VeRDi project

4. Conclusion

1



Introduction



Distributed infrastructure

Distributed infrastructure

• Set of distributed interconnected machines

• e.g. HPC clusters, Local servers, Grid

(Grid’5000, EGI), private/public Cloud

(Amazon), Fog and Edge

• Properties: heterogeneous, large scale

2



Distributed software

Distributed software

• Software composed of multiple modules

• Dependencies between these modules

Component models

• Set of modules ≈ set of components

• Black box of code

• Explicit interfaces through ports (e.g.

functional dependencies: use-provide)

• Assembly languages to define an

application

• instances of components

• connections between ports

• Separation of concerns, maintainability etc.

3



What is the deployment?

Deployment

• Placement (mapping modules / resources)

• Software commissioning

• Allocation of resources

• Creation and configuration of the

components

• Connection of the components

• etc.

4



Problem statement

Soft. and infrastructures evolution

• bigger distributed software

• e.g., OpenStack, Spark, smart-* apps etc.

• massively geo-distributed heterogeneous infrastructures

• e.g., Fog, Edge, IoT

Problem statement

• deployment automation

• generic deployment

• easy deployment

• efficient deployment

• safe deployment

5



Deployment



Deployment

Automated deployment



Automated deployment - Scripts

Installing LAMP (Linux Apache MySQL Php) on a (bare metal) server

Steps

• install an operating system (Linux)

• install (apt-get install)

• configuration of Apache, MySQL

• network configuration

• check installation, add plugins etc.

Portability issues and errors

• commands are not portable from one OS to another

• libraries may have different versions on different OSs

• OS specific configurations may be needed

• error prone

6

https://doc.ubuntu-fr.org/lamp


Automated deployment - Virtualization

Enhances portability of deployment

Virtual images

• images are needed both for VM and containers

• user can build her/his own images (bootstrap installation)

• user can use existing images (Docker registry, VM templates) 7



Automated deployment - Virtualization

Installing Apache using Docker and centos basic image

Docker container virtualization

• understand Docker commands

• write or customiza Docker files

• bootstrap problem for IT administrators

Cloud providers

• understand the provisioning API of Cloud providers (AWS Cloud

formation, Heat orchestration Template etc.)

• system commands may still be needed to configure or customize the

VM

• worse bootstrap problem for Cloud administrators (e.g., OpenStack

deployment)

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/install_and_deploy_an_apache_web_server_container
https://success.docker.com/article/multiple-docker-networks
https://aws.amazon.com/cloudformation/?nc1=h_ls
https://aws.amazon.com/cloudformation/?nc1=h_ls
https://docs.openstack.org/heat/latest/template_guide/hot_guide.html


Automated deployment - Tools and models

Ansible, Puppet, Chef

• abstractions above SSH and bash scripts (e.g., yaml, python)

• generic deployment tools (e.g., bare metal, containers or VMs)

• deployment procedure splited in different parts

• hierarchical view

• e.g., roles, playbooks, tasks

• data communication between parts

• e.g., handled by Jinja2

• same set of operations can be applied on multiple hosts

• strict sequential order between different parts (roles, playbooks and

tasks)

• bootstrap problem is very limited (ssh, python on nodes)

LAMP deployment in Ansible

LAMP deployment in Puppet 9

https://github.com/ansible/ansible-examples/tree/master/lamp_simple/roles
https://www.linode.com/docs/applications/configuration-management/use-puppet-modules-to-create-a-lamp-stack/


Deployment

State of the art



Classification metrics

Very complex deployment ecosystem: scripts, virtualization, ansible,

puppet, chef, kubernetes, juju, etc.

State of the art limited to deployment models and tools

Deployment and components

• 1 module ≈ 1 component (e.g., role in Ansible)

• each component has a deployment life-cycle (e.g., stoped,

configured, installed etc., plabooks and tasks in Ansible)

• life-cycle management automation is needed

Properties

• Programmable life-cycle (expressivity, safety)

• Life-cycle coordination (automation and safety)

• Parallelism (operations on multiple hosts, inter-component,

intra-component)
10



State of the art

Production tools

Model Programmable life-cycle Life-cycles coordination Parallelism

Ansible/Puppet/Chef Yes Yes (sequential) Same component multiple hosts

Kubernetes No No inter-component

Juju No Yes (fixed) inter-component

Academic research

Model Programmable life-cycle Life-cycles coordination Parallelism

CCM/L2C/Deployware No Yes (fixed) inter-component

Fractal/GCM Yes No inter-component

TOSCA Yes No inter-component

Blender/Aeolus Yes Yes inter-component+

• Madeus is a new component-based deployment model

• Madeus is inpired from Aeolus

• Madeus enhances the efficiency of deployements

11

https://hal.archives-ouvertes.fr/hal-01858150v1


Deployment

Madeus



Madeus - Definitions

Component

• Usually corresponds to a module of a

distributed application

• Has its own life-cycle

12



Madeus - Definitions

Place

• A “milestone” in the component life-cycle

• Acts as a synchronization mark if multiple

actions are performed in parallel

13



Madeus - Definitions

Transition

• Bound to an action (i.e. a function)

• From one place to another

14



Madeus - Definitions

Dock

• Allows to handle synchronization of

parallel actions with a graphical object

• Attached to places

• Two kinds of docks: input and output

• Connection points for transitions

15



Madeus - Definitions

Token

• Represents the state in the life-cycle of the

component

• Either present on or absent of each place,

dock and transition

16



Madeus - Definitions

Input port

• Bound to transitions that require some

data/service

• These transitions can only be triggered

when the port is connected

17



Madeus - Definitions

Output port

• Data output ports: provide data (e.g. IP

address)

• Service output ports: indicates that a

service is provided by the component

18



Madeus - Definitions

Assembly

• Set of instances of components

• Connections between their

ports

• Similar to a main function

Configuration 〈mk , ebl , val〉

• mk : marking = location of

tokens

• ebl : enabled = whether or not

connections are enabled

• val : values = values stored in

the data output ports

19



Madeus - Operational Semantics

input docks

to place

place to

output docks
fire transition end transition

enable data

connection

enable service connection

disable service connection

20



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - LAMP example

21



Madeus - Evaluation

OpenStack (bootstrap)

• open source operating system of the Cloud

• large distributed software

• modular architecture composed of more than 30 projects

• more than 150 services

Kolla-Ansible OpenStack Deployment

• our deployment reference is the Kolla project

• production tool to deploy OpenStack ONLY

• deploy a containerized minimal OpenStack by using Ansible

• 11 projects, 36 services

• deployment on three nodes: controller (16 services), network (11

services), compute (9 services)

22



Madeus - Evaluation

Full coarse-grain view of the Madeus deployment

Places Transitions Ports

32 30 47

23



Madeus - Evaluation

Detailed Madeus components (MariaDB, Nova, Glance)

24



Madeus - Evaluation

Deployment versions

• spmd-1t = Kolla-ansible

• dag-2t = Aeolus (simulated with Madeus, no parallel transitions)

• dag-nt = Madeus

Docker image management

• remote (Docker Hub)

• local (dedicated local registry in the cluster)

• cached (all nodes already store docker images)

Cluster CPU Memory Network

Taurus (g5k) 2 x 6 cores/CPU 32GB 10 Gbps

Compute Network Control

Number of images 9 11 16

Total size (MB) 2767 2705 4916

25



Madeus - Evaluation

• 58% faster than Kolla-Ansible

• 32% faster than Blender-Aeolus
26



Deployment

Verification and Madeus



Madeus and Petri nets

Developer

Madeus assembly Properties

PN compiler TL compiler

Model Checker Translator

writes

27



Madeus and Petri nets

• Madeus places −→ Petri net places

• Madeus docks −→ Petri net places

• Madeus transitions −→ Petri net places

• Madeus connections −→ Petri net places

• places and transitions of the Petri net connected such that the same

semantics is applied

• specific case for groups, not detailed in this talk

28



Madeus and Petri nets

M1

M2

M3

M4

M5

N1

N2

N3

N4

N5

N6

G2dO1

G2

G3

G4

M1dO

M2Mprovision

M2dI

M4dI

M2dO1 M2dO2

M3Mpull M3Mboot

M3dI1 M3dI2

M3dO

M4Mrestart

M4dO1 M4dO2

M5Mregister M5Mcheck

M5dI1 M5dI2

com ha

IP mdb

G1

G2dO2

G1dO

G2Mprovision

G2dI

G2dO3

G3GconfigG3Gpull G3Gregister

G3dI1 G3dI2 G3dI3

G3dO

G4Gdeploy

G4dI

mdb

IP kst

glance

kst

N1dO

N2Nprovision

N2dI

N2dO1N2dO2 N2dO3N2dO4

N3Ncreate dbN3Npull N3Nconfig

N6Nregister

N3dI1N3dI2 N3dI3

N6dI2

N3dO1 N3dO2
IP gla

IP nova

N4Nupg db N4Nupg api db

N4dI1 N4dI2

N4dO

N5Nrestart

N5dI

N5dO

N6Ncell setup

N6dI
nova

err

before mcheck

after mcheck

after Gdeploy

before gdeploy

before Nrestart

after nrestart

Mprovision

[0, 0]

Mpull

[0, 0]

Mboot

[0, 0]

Mrestart

[0, 0]

Mregister

[0, 0]

Mcheck

[0, 0]

Nprovision

[0, 0]

Ncreate db

[0, 0]

Npull

[0, 0]

Nconfig

[0, 0]

Nupg db

[0, 0]

Nupg api db

[0, 0]

Nrestart

[0, 0]

Ncell setup

[0, 0]

G2tO

[0, 0]

Gconfig

[0, 0]

Gpull

[0, 0]

Gregister

[0, 0]

Gdeploy

[0, 0]

M1dOt

[0, 0]

M2dIt

[0, 0]M2tI

[0, 0]

M2tO

[0, 0]

M3dI1t

[3, 5]

M3dI2t

[31, 35]

M3tI

[0, 0]

M3tO

[0, 0]

M4dIt

[14, 15]

M4tI

[0, 0]

M4tO

[0, 0]

M5dI1t

[3, 5] M5dI2t

[12, 14]

M5tI

[0, 0]
nrestart before mcheck

[0, 0]

Gprovision

[0, 0]
G1dOt

[0, 0]

G2dIt

[0, 0]

G2tI

[0, 0]

G3dI1t

[8, 9]

G3dI2t

[5, 6]

G3dI3t

[20, 27]

G3tI

[0, 0]

G3tO

[0, 0]

G4dIt

[91, 147]

G4tI

[0, 0]

gdeploy before mcheck

[0, 0]
nrestart before gdeploy

[0, 0]

N1dO1

[0, 0]

N2dIt

[0, 0]

N2tI

[0, 0]

N2tO

[0, 0]

Nregister

[0, 0]

N3dI1t

[12, 15]

N3dI2t

[8, 18]

N3dI3t

[22, 23]

N6dI2t

[50, 58]

N3tI

[0, 0]

N3tO

[0, 0]

N4dI1t

[99, 177]

N4dI2t

[44, 69]

N4tI

[0, 0]

N4tO

[0, 0]

N5dIt

[13, 16]

N5tI

[0, 0]

N5tO

[0, 0]

N6dIt

[176, 251]

N6tI

[0, 0]

29



Property language

1 def addInterval(self, transition, min, max)

2 def addDeployment(self, name, list_places)

3 def deployability(self, name_deployment, with_intervals,

4 traces)

5 def sequentiality(self, transition1, transition2, ...)

6 def parallelism(self, full_assembly, list_components)

7 def boundaries(self, traces)

Properties to temporal logic

• deployability −→ inevitability

• sequence −→ observer subnet + invariant

• parallelism −→ max(
∑

(reachable markings))

• boundaries: min/max costs + critical path

30



Traces and debug

provision

bootpull

restart

checkregister

MariaDB

provision

pull
config

create-db

upg-api-db
upg-db

restart

cell-setup

register

kst

@IP kst

nova

@IP gla

@IP nova

@IP mdb

mdb

Nova

provision

pull
config register

deploy

Glance

@IP kst

@IP mdb

mdb

@IP kst

kst

@IP gla

glancemdb

ha

@IP mdb

com

1

2

3

4

5

6

7

8

31



Perspectives

Perspectives

• Proof of semantic equivalence between Madeus and the Petri net

• Conditions and errors in Madeus

• Probabilistic model

• Game theory

Other ongoing work

Coq modelization of Madeus (proofs on the model)

32



Reconfiguration



Reconfiguration

Context



Context

Reconfiguration

• Deployment = specific reconfiguration

• Rolling upgrade

• Dynamic resources (add/remove nodes, failures)

• Dynamic software topology (add/remove/replace/new configuration)

• Other dynamic information (security/energy etc.)

33



State of the art

Metrics

• Performance: as fast as possible

• minimize downtime

• minimize execution time

• Expressivity: handling many kinds of reconfiguration

• Separation of concerns between developers and reconfiguration

designers

• each actor does what is in their area of expertise

Objectives

• Extend Madeus with reconfiguration to inherite its efficiency

• Increase separation of concerns compared to Aeolus

34



Reconfiguration

Madeus++



Madeus assembly

dep2
service

dep3

dep1

dep2_ip

dep1_ip

dep3_ipip

service

ip

Server

Dep

uninstalled

running

configed

alloced uninstalled

running

configed

• Efficient deployment (programmable life-cycle, parallelism)

• No reconfiguration

35



Madeus++ assembly

dep2service

dep3

dep1

dep2_ip

dep1_ip

dep3_ipip

service

ip

Server

Dep

uninstalled

running

configed

deploy

update

alloced

suspended

uninstall

uninstalled

running

configed

deploy
update

suspend

• Introduction of behaviors within Madeus

• Add a reconfiguration language composed of 6 operations: add, del,

connect, disconnect, changeBehavior, wait

36



Madeus++ reconfiguration

dep2service

dep3

dep1

dep2_ip

dep1_ip

dep3_ipip

service

ip

Server

Dep

uninstalled

running

configed

deploy

update

alloced

suspended

uninstall

uninstalled

running

configed

deploy
update

suspend

1 changeBehavior(server,suspend)

2 changeBehavior(dep,update)

3 wait(server)

4 disconnect(server,dep1,dep,service)

5 changeBehavior(server,update)

6 wait(dep)

7 changeBehavior(dep,install)

8 wait(server)

9 changeBehavior(server,install)

37



Behavioral interfaces

dep2service

dep3

dep1

dep2_ip

dep1_ip

dep3_ip
ip

service

ip

Server

Dep
deploy

update
uninstall

deploy
update

suspend

• Simplified interfaces for the reconfiguration designer

• Increases the separation of concerns

38



Madeus++ reconfiguration

dep2service

dep3

dep1

dep2_ip

dep1_ip

dep3_ip
ip

service

ip

Server

Dep
deploy

update
uninstall

deploy
update

suspend

1 changeBehavior(server,suspend)

2 changeBehavior(dep,update)

3 wait(server)

4 disconnect(server,dep1,dep,service)

5 changeBehavior(server,update)

6 wait(dep)

7 changeBehavior(dep,install)

8 wait(server)

9 changeBehavior(server,install)

39



Madeus++ ongoing work

• A prototype of MAD++ has been implemented in Python

• Experiments on real case study (database migration)

• Proof of equivalence between madeus++ and behavioral interfaces

40



Reconfiguration

VeRDi project



VeRDi project

Verified Reconfiguration Driven by execution

Automated reconfiguration execution

• programmable reconfiguration protocols

• efficient reconfiguration (parallelism)

• safe reconfiguration

• decentralized reconfiguration

A few challenges

• programmable protocols

• high level of parallelism

• static and dynamic verifications

• verification of decentralized reconfiguration (local knowledge)

• use verification as a tool to help the developer

41

http://helene-coullon.fr/verdi/


Conclusion



Conclusion

• Deployment and Madeus

• efficiency

• evaluation on OpenStack

• Madeus and Petri nets

• transformation of a Madeus assembly to a Petri net

• transformation of the property language to temporal logic

• use a model checker for verification and debug

• Reconfiguration and Madeus++

• efficiency

• separation of concerns

• The VeRDi project

42



People involved

Madeus and Madeus++

Dimitri Pertin Maverick Chardet Christian Perez

Former postdoc Ph.D. student DR Inria, Lyon

Team leader Avalon Inria, LIP

Madeus and Petri nets Madeus and Coq

Didier Lime Claude Jard Frederic Loulergue

HDR Ecole Centrale de Nantes Professor Université de Nantes Professor at NAU USA

Team leader STR LS2N Head of LS2N 43

https://graal.ens-lyon.fr/~cperez/web/doku.php
http://pagesperso.ls2n.fr/~lime-d/
http://pagesperso.lina.univ-nantes.fr/~jard-c/
https://frederic.loulergue.eu/

	Introduction
	Deployment
	Automated deployment
	State of the art
	Madeus
	Verification and Madeus

	Reconfiguration
	Context
	Madeus++
	VeRDi project

	Conclusion

