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Introduction



Distributed infrastructure

Distributed infrastructure

• Set of distributed interconnected machines

• e.g. HPC clusters, Local servers, Grid

(Grid’5000, EGI), private/public Cloud

(Amazon), Fog and Edge

• Properties: heterogeneous, large scale
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Distributed software

Distributed software

• Software composed of multiple modules

• Dependencies between these modules

Component models

• Set of modules ≈ set of components

• Black box of code

• Explicit interfaces through ports (e.g.

functional dependencies: use-provide)

• Assembly languages to define an

application

• instances of components

• connections between ports

• Separation of concerns, maintainability etc.
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What is the deployment?

Deployment

• Placement (mapping modules / resources)

• Software commissioning

• Allocation of resources

• Creation and configuration of the

components

• Connection of the components

• etc.
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Problem statement

Soft. and infrastructures evolution

• bigger distributed software

• e.g., OpenStack, Spark, smart-* apps etc.

• massively geo-distributed heterogeneous infrastructures

• e.g., Fog, Edge, IoT

Problem statement

• deployment automation

• generic deployment

• easy deployment

• efficient deployment

• safe deployment
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Deployment
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Automated deployment - Scripts

Installing LAMP (Linux Apache MySQL Php) on a (bare metal) server

Steps

• install an operating system (Linux)

• install (apt-get install)

• configuration of Apache, MySQL

• network configuration

• check installation, add plugins etc.

Portability issues and errors

• commands are not portable from one OS to another

• libraries may have different versions on different OSs

• OS specific configurations may be needed

• error prone
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Automated deployment - Virtualization

Enhances portability of deployment

Virtual images

• images are needed both for VM and containers

• user can build her/his own images (bootstrap installation)

• user can use existing images (Docker registry, VM templates) 7



Automated deployment - Virtualization

Installing Apache using Docker and centos basic image

Docker container virtualization

• understand Docker commands

• write or customiza Docker files

• bootstrap problem for IT administrators

Cloud providers

• understand the provisioning API of Cloud providers (AWS Cloud

formation, Heat orchestration Template etc.)

• system commands may still be needed to configure or customize the

VM

• worse bootstrap problem for Cloud administrators (e.g., OpenStack

deployment)
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https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/install_and_deploy_an_apache_web_server_container
https://success.docker.com/article/multiple-docker-networks
https://aws.amazon.com/cloudformation/?nc1=h_ls
https://aws.amazon.com/cloudformation/?nc1=h_ls
https://docs.openstack.org/heat/latest/template_guide/hot_guide.html


Automated deployment - Tools and models

Ansible, Puppet, Chef

• abstractions above SSH and bash scripts (e.g., yaml, python)

• generic deployment tools (e.g., bare metal, containers or VMs)

• deployment procedure splited in different parts

• hierarchical view

• e.g., roles, playbooks, tasks

• data communication between parts

• e.g., handled by Jinja2

• same set of operations can be applied on multiple hosts

• strict sequential order between different parts (roles, playbooks and

tasks)

• bootstrap problem is very limited (ssh, python on nodes)

LAMP deployment in Ansible

LAMP deployment in Puppet 9

https://github.com/ansible/ansible-examples/tree/master/lamp_simple/roles
https://www.linode.com/docs/applications/configuration-management/use-puppet-modules-to-create-a-lamp-stack/


Deployment

State of the art



Classification metrics

Very complex deployment ecosystem: scripts, virtualization, ansible,

puppet, chef, kubernetes, juju, etc.

State of the art limited to deployment models and tools

Deployment and components

• 1 module ≈ 1 component (e.g., role in Ansible)

• each component has a deployment life-cycle (e.g., stoped,

configured, installed etc., plabooks and tasks in Ansible)

• life-cycle management automation is needed

Properties

• Programmable life-cycle (expressivity, safety)

• Life-cycle coordination (automation and safety)

• Parallelism (operations on multiple hosts, inter-component,

intra-component)
10



State of the art

Production tools

Model Programmable life-cycle Life-cycles coordination Parallelism

Ansible/Puppet/Chef Yes Yes (sequential) Same component multiple hosts

Kubernetes No No inter-component

Juju No Yes (fixed) inter-component

Academic research

Model Programmable life-cycle Life-cycles coordination Parallelism

CCM/L2C/Deployware No Yes (fixed) inter-component

Fractal/GCM Yes No inter-component

TOSCA Yes No inter-component

Blender/Aeolus Yes Yes inter-component+

• Madeus is a new component-based deployment model

• Madeus is inpired from Aeolus

• Madeus enhances the efficiency of deployements
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Madeus - Definitions

Component

• Usually corresponds to a module of a

distributed application

• Has its own life-cycle
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Madeus - Definitions

Place

• A “milestone” in the component life-cycle

• Acts as a synchronization mark if multiple

actions are performed in parallel
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Madeus - Definitions

Transition

• Bound to an action (i.e. a function)

• From one place to another
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Madeus - Definitions

Dock

• Allows to handle synchronization of

parallel actions with a graphical object

• Attached to places

• Two kinds of docks: input and output

• Connection points for transitions
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Madeus - Definitions

Token

• Represents the state in the life-cycle of the

component

• Either present on or absent of each place,

dock and transition
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Madeus - Definitions

Input port

• Bound to transitions that require some

data/service

• These transitions can only be triggered

when the port is connected
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Madeus - Definitions

Output port

• Data output ports: provide data (e.g. IP

address)

• Service output ports: indicates that a

service is provided by the component
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Madeus - Definitions

Assembly

• Set of instances of components

• Connections between their

ports

• Similar to a main function

Configuration 〈mk , ebl , val〉

• mk : marking = location of

tokens

• ebl : enabled = whether or not

connections are enabled

• val : values = values stored in

the data output ports
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Madeus - Operational Semantics

input docks

to place

place to

output docks
fire transition end transition

enable data

connection

enable service connection

disable service connection
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Madeus - LAMP example
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Madeus - Evaluation

OpenStack (bootstrap)

• open source operating system of the Cloud

• large distributed software

• modular architecture composed of more than 30 projects

• more than 150 services

Kolla-Ansible OpenStack Deployment

• our deployment reference is the Kolla project

• production tool to deploy OpenStack ONLY

• deploy a containerized minimal OpenStack by using Ansible

• 11 projects, 36 services

• deployment on three nodes: controller (16 services), network (11

services), compute (9 services)
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Madeus - Evaluation

Full coarse-grain view of the Madeus deployment

Places Transitions Ports

32 30 47
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Madeus - Evaluation

Detailed Madeus components (MariaDB, Nova, Glance)
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Madeus - Evaluation

Deployment versions

• spmd-1t = Kolla-ansible

• dag-2t = Aeolus (simulated with Madeus, no parallel transitions)

• dag-nt = Madeus

Docker image management

• remote (Docker Hub)

• local (dedicated local registry in the cluster)

• cached (all nodes already store docker images)

Cluster CPU Memory Network

Taurus (g5k) 2 x 6 cores/CPU 32GB 10 Gbps

Compute Network Control

Number of images 9 11 16

Total size (MB) 2767 2705 4916
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Madeus - Evaluation

• 58% faster than Kolla-Ansible

• 32% faster than Blender-Aeolus
26
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Madeus and Petri nets

Developer

Madeus assembly Properties

PN compiler TL compiler

Model Checker Translator

writes
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Madeus and Petri nets

• Madeus places −→ Petri net places

• Madeus docks −→ Petri net places

• Madeus transitions −→ Petri net places

• Madeus connections −→ Petri net places

• places and transitions of the Petri net connected such that the same

semantics is applied

• specific case for groups, not detailed in this talk
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Madeus and Petri nets
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Property language

1 def addInterval(self, transition, min, max)

2 def addDeployment(self, name, list_places)

3 def deployability(self, name_deployment, with_intervals,

4 traces)

5 def sequentiality(self, transition1, transition2, ...)

6 def parallelism(self, full_assembly, list_components)

7 def boundaries(self, traces)

Properties to temporal logic

• deployability −→ inevitability

• sequence −→ observer subnet + invariant

• parallelism −→ max(
∑

(reachable markings))

• boundaries: min/max costs + critical path
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Traces and debug
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Perspectives

Perspectives

• Proof of semantic equivalence between Madeus and the Petri net

• Conditions and errors in Madeus

• Probabilistic model

• Game theory

Other ongoing work

Coq modelization of Madeus (proofs on the model)
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Context

Reconfiguration

• Deployment = specific reconfiguration

• Rolling upgrade

• Dynamic resources (add/remove nodes, failures)

• Dynamic software topology (add/remove/replace/new configuration)

• Other dynamic information (security/energy etc.)
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State of the art

Metrics

• Performance: as fast as possible

• minimize downtime

• minimize execution time

• Expressivity: handling many kinds of reconfiguration

• Separation of concerns between developers and reconfiguration

designers

• each actor does what is in their area of expertise

Objectives

• Extend Madeus with reconfiguration to inherite its efficiency

• Increase separation of concerns compared to Aeolus
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Madeus assembly

dep2
service

dep3

dep1

dep2_ip

dep1_ip

dep3_ipip

service

ip

Server

Dep

uninstalled

running

configed

alloced uninstalled

running

configed

• Efficient deployment (programmable life-cycle, parallelism)

• No reconfiguration
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Madeus++ assembly

dep2service

dep3

dep1

dep2_ip

dep1_ip

dep3_ipip

service

ip

Server

Dep

uninstalled

running

configed

deploy

update

alloced

suspended

uninstall

uninstalled

running

configed

deploy
update

suspend

• Introduction of behaviors within Madeus

• Add a reconfiguration language composed of 6 operations: add, del,

connect, disconnect, changeBehavior, wait
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Madeus++ reconfiguration

dep2service

dep3

dep1

dep2_ip

dep1_ip

dep3_ipip

service

ip

Server

Dep

uninstalled

running

configed

deploy

update

alloced

suspended

uninstall

uninstalled

running

configed

deploy
update

suspend

1 changeBehavior(server,suspend)

2 changeBehavior(dep,update)

3 wait(server)

4 disconnect(server,dep1,dep,service)

5 changeBehavior(server,update)

6 wait(dep)

7 changeBehavior(dep,install)

8 wait(server)

9 changeBehavior(server,install)
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Behavioral interfaces

dep2service

dep3

dep1

dep2_ip

dep1_ip

dep3_ip
ip

service

ip

Server

Dep
deploy

update
uninstall

deploy
update

suspend

• Simplified interfaces for the reconfiguration designer

• Increases the separation of concerns
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Madeus++ reconfiguration

dep2service

dep3

dep1

dep2_ip

dep1_ip

dep3_ip
ip

service

ip

Server

Dep
deploy

update
uninstall

deploy
update

suspend

1 changeBehavior(server,suspend)

2 changeBehavior(dep,update)

3 wait(server)

4 disconnect(server,dep1,dep,service)

5 changeBehavior(server,update)

6 wait(dep)

7 changeBehavior(dep,install)

8 wait(server)

9 changeBehavior(server,install)
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Madeus++ ongoing work

• A prototype of MAD++ has been implemented in Python

• Experiments on real case study (database migration)

• Proof of equivalence between madeus++ and behavioral interfaces
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VeRDi project

Verified Reconfiguration Driven by execution

Automated reconfiguration execution

• programmable reconfiguration protocols

• efficient reconfiguration (parallelism)

• safe reconfiguration

• decentralized reconfiguration

A few challenges

• programmable protocols

• high level of parallelism

• static and dynamic verifications

• verification of decentralized reconfiguration (local knowledge)

• use verification as a tool to help the developer
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Conclusion

• Deployment and Madeus

• efficiency

• evaluation on OpenStack

• Madeus and Petri nets

• transformation of a Madeus assembly to a Petri net

• transformation of the property language to temporal logic

• use a model checker for verification and debug

• Reconfiguration and Madeus++

• efficiency

• separation of concerns

• The VeRDi project
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