
Virtualization of IT resources
Virtual machines and containers

1

Hélène Coullon, Associate prof., IMT Atlantique, Inria, LS2N - helene.coullon@imt-atlantique.fr

Jonathan Pastor, postdoc, IMT Atlantique, Inria, LS2N - jonathan.pastor@imt-atlantique.fr

mailto:helene.coullon@imt-atlantique.fr
mailto:jonathan.pastor@imt-atlantique.fr

Virtualization?

2

Virtual machines

3

Principles of virtualization with virtual machines
Partition of computer (host) in several virtual

computers (guests) that run concurrently

Each guest runs its own operating system

Each guest is isolated from the other guests

Allocations of host’s resources to guests is managed

by a Virtual Machine Manager (VMM)

There are different kind of virtualization (hypervisor

based virtualisation, kernel-level virtualisation,

shared-kernel virtualisation)

4

History of virtualization with virtual machines
Early 1960s: IBM M44/44X is an IBM 7044 divided in several sub computers

(first use of ‘Virtual machines’ word)

1964: IBM CP-40 research system used to prove the capability of time sharing

using virtual machines. It paved the ground for the CP-67 system (1967)

1972: IBM VM/370 (first standard release with VMs)

Late 1990s: Computers are cheaper and faster. Need for solutions that enable

to run other OS (VMWare 1.0 in 1999)

2000s: Development of hypervisors (XEN, VMware).

→ Virtualisation of servers, Cloud Computing (IaaS layer)

5

What is a virtual machine?
Like a typical computer, a virtual machine will have:

● One or several virtual CPUs

● An allocation of RAM

● One or several virtual disks

● One or several network interfaces

A virtual machine is created from a virtual image, which

is like a snapshot of a file system.

Virtual machines support operations such as

snapshotting, live migration.

6

How does it work?
Protection rings define privilege levels for

instructions executed by a processor

An operating system needs to run privileged

instructions (memory management, IOs, ...) : it

runs in ring 0, while applications runs in ring 3

Different techniques enabled a guest operating

system to run privileged instructions despite not

running directly on ring 0.

7

Hypervisors (list them)
● Native hypervisors:

○ Xen

○ KVM

○ VMWare ESXi

○ Microsoft HyperV (Azure)

● Hosted hypervisors:

○ QEMU

○ VMWare workstation/fusion

○ VirtualBox

8

credits : wikipédia

Credits: [2015 Song]

Demo
Virtualization

9

Containers

10

VMs vs containers - the big picture

11

VMs vs containers - a system vision

12

History
● 2002 namespace isolation in the Linux kernel

○ Isolation of processes

○ E.g. partitioning memory allocation into namespaces

● 2007 control groups (cgroups) developed by Google in the Linux kernel

○ Partitioning of the resource usage of processes

○ Resource limitation, priorities, accounting, control

● 2008 Linux Containers (LXC)

○ Combination of namespaces isolation and cgroups

● 2013 Docker containers

○ Initially an evolution of LXC

○ Oriented for the packaging of apps or services

● Other solutions: CoreOS (Rocket), runC, Singularity (HPC) etc. (see this link)

● Containers open specification: OCI

13

https://github.com/appc/spec
https://coreos.com/blog/rocket/
https://github.com/opencontainers/runc
https://singularity.lbl.gov/
https://en.wikipedia.org/wiki/OS-level_virtualization#Implementations
https://www.opencontainers.org/

Pros & cons containers

● Light virtualization mechanism

● Almost no overheads compared to

VMs

● Faster startup time

● Easy packaging of apps (Docker)

● Portability and simplified

infrastructure management

14

● Live migration more difficult than

VMs [2017 Al-Dhuraibi]

● Basically one operating system for

all applications

● Security and isolation more

difficult than VMs [2019 Shen]

Pros Cons

LXC vs Docker - Pet vs Cattle

15

● Scale up, evolution

● Long lifecycle

● Scale out

● Consume and discard

Operating system level containers - LXC/LXD (pet)
● Usage close to a virtual machine

○ One OS init for each container

○ Access and modification of the operating system

○ Persistent data embedded within the container

● Very light ecosystem easy to handle

● LXD

○ Extension of LXC Written in Go

○ REST API that connects to libxlc

○ A host can run many LXC containers using only a single system daemon

○ Improves security within LXC containers

○ Simplifies networking and data storage sharing between containers

○ Container migration and snapshot of a running container

16

Application level containers - Docker (cattle)
● Docker started as a project to build single-application LXC containers

● Introduction of several changes to LXC that make containers more portable and

flexible to use

● Nowadays have their own container technology

● Written with the Go language

● Complex Docker ecosystem

○ Docker Hub

○ Docker Desktop

○ Docker swarm, Kubernetes, Marathon, Mesos etc.

17

https://golang.org/

LXC vs Docker images

18

Demo
Containers

1. LXC (pet)

○ https://linuxcontainers.org/lxd/try-it

○ Create a container and use it

○ Snapshot and restore (LXD)

2. Docker (cattle)

○ Pull an image from Docker Hub

○ Run a container

○ Create a new layered image

○ Docker containers creation

○ Data volumes creation

19

https://linuxcontainers.org/lxd/try-it

Nested virtualization?

20

VMs and containers

21

VMs Containers

● Isolation & security

● Multiple OSs

● Live migration

● Light

● Efficiency

● Apps packaging

Unikernel

MicroVM

Singularity (HPC)

https://unit42.paloaltonetworks.com/making-containers-more-isolated-an-overview-of-sandboxed-container-technologies/

https://unit42.paloaltonetworks.com/making-containers-more-isolated-an-overview-of-sandboxed-container-technologies/

What you have learned so far
● The basic concepts about virtual machines

● The basic concepts about containers

● The main differences between VMs and containers

● The basic usages of VMs and containers

22

Operating system for virtualized infrastructures?
● VMs and containers orchestration

○ Subpart of OpenStack (opensource), AWS EC2 etc. (for VMs)

○ Kubernetes, Mesos, Docker Swarm, AWS ECS/EKS etc. (for containers)

● OpenStack is the de-facto open source operating system to handle the IaaS level

of the Cloud Computing paradigm

23

What if you are an infrastructure provider?
● You have to handle many VMs and containers (resources) simultaneously

● Some of them being interdependent

● You have to handle a multi-node and even multi-cluster infrastructure

● You have to handle many users simultaneously

24

Next step
THE CLOUD COMPUTING PARADIGM

Questions?

Some references
● [2017 Al-Dhuraibi] Autonomic Vertical Elasticity of Docker Containers with

ELASTICDOCKER. Y. Al-Dhuraibi and F. Paraiso and N. Djarallah and P. Merle.

CLOUD 2017.

● [2019 Shen] X-Containers: Breaking Down Barriers to Improve Performance and

Isolation of Cloud-Native Containers. Zhiming Shen, Zhen Sun, Gur-Eyal Sela,

Eugene Bagdasaryan, Christina Delimitrou, Robbert Van Renesse and Hakim

Weatherspoon. ASPLOS 2019.

● [2015 Song] Hardware and Software Aspects of VM-Based Mobile-Cloud

Offloading. Song, Yang & Wang, Haoliang & Soyata, Tolga. (2015).

25

