
Towards efficient and safe autonomic (re)configuration

Hélène Coullon
Associate professor IMT Atlantique, Inria chair, UiT

Introduction

Complex distributed software systems

OpenStack (infrastructure management) - up to 250 modules

1/38

Complex distributed software systems

Micro-services architectures of Netflix and Amazon - thousands of modules

2/38

Context

Distributed software systems

• Ever-lived and long-lived module-based systems

• High number of modules

• Complexity of dependencies between modules

Examples of management operations at runtime (deployment/reconfiguration)

• Unavailable services (faults, errors)

• Need to add/remove modules and/or connections

• Change of internal configurations

• Update of some modules

3/38

Autonomic reconfiguration

Objective

• Autonomic distributed systems
• "Computing systems that can manage themselves given high-level objectives from

administrators" [1]
• Autonomic reconfiguration

MAPE-K autonomic loop [1]

• (M)onitoring

• Decisions: (A)nalysis, (P)lanning

• (E)xecution

• (K)nowledge

M A

PE

K

[1] The vision of autonomic computing. J. O. Kephart and D. M. Chess. In Computer, 2003.
4/38

VeRDi project - Generic autonomic reconfiguration

M A

PE

K

VeRDi project

• Led by Hélène Coullon

• Verified & efficient generic reconfiguration

• Co-supervision of Maverick Chardet (PhD)
• funded by the IPL Discovery of Adrien Lebre
• Christian Perez
• [defended the 2020-12-03]

• Supervision of two postdocs and one engineer
• Dimitri Pertin, postdoc
• Simon Robillard, postdoc [ongoing]
• Charlène Servantie, engineer

5/38

Motivation and state of the art

(Re)configuration execution = Coordination

Base de
données

Serveur
web<< utilise >>

Database (DB)

1. Install MySQL package + deps

2. Configure parameters

3. Start the service

4. Add a user

5. Create some tables

Web-server (WS)

1. Install Apache package + deps

2. Configure the firewall

3. Download the website content

4. Configure parameters

5. Start the service

Dependencies: WS(4) → DB(3), WS(5) → DB(5) 6/38

Concerto: goals and philosophy

A model for reconfigurations in component-based systems

• represent the lifecycle of components
• non-functional aspect
• in this talk, component = control component

• coordinate reconfiguration actions
• e.g. starting/stopping VM, downloading images, installing/updating software. . .

Performance

• structured parallelism

• reach quickly a configuration

• avoid disruption time

Safety

• formally-defined semantics

• tools to assist during design

• verification of properties

7/38

Concerto: goals and philosophy

A model for reconfigurations in component-based systems

• represent the lifecycle of components
• non-functional aspect
• in this talk, component = control component

• coordinate reconfiguration actions
• e.g. starting/stopping VM, downloading images, installing/updating software. . .

Performance

• structured parallelism

• reach quickly a configuration

• avoid disruption time

Safety

• formally-defined semantics

• tools to assist during design

• verification of properties

7/38

Performance through parallelism

level 1: multiple nodes, same action

• no dependencies declared

• procedural execution order

• [Ansible] A

B

C C

a1

a2

a3

b1

b2

b3

b4

b5

c1

c2

c3

c1

c2

c3

Node 1 Node 2

Node Y

Node X

8/38

Performance through parallelism

level 2: non-dependent components

• dependencies at the component level

• [Deployware, Tosca]

A

B C C

a1

a2

a3

b1

b2

b3

b4

b5

c1

c2

c3

c1

c2

c3

Node 1 Node 2Node Y

Node X

9/38

Performance through parallelism

level 3: inter-component

• dependencies at the task level

• [Aeolus]

A

B C C

wait

c1

c2

c3

c1

c2

c3

b1

b2

b3

b4

b5

a1

a2

a3

Node 1 Node 2

Node X Node Y

10/38

Performance through parallelism

level 4: intra-component

• internal task dependencies

• [Concerto]

A B C C

wait

a1

a2

a3

b1

b2

b3 b4 b5

c1
c2

c3

c1
c2

c3

Node X Node Y

Node 1 Node 2

Parallel execution requires precise description of dependencies

11/38

Performance through parallelism

level 4: intra-component

• internal task dependencies

• [Concerto]

A B C C

wait

a1

a2

a3

b1

b2

b3 b4 b5

c1
c2

c3

c1
c2

c3

Node X Node Y

Node 1 Node 2

Parallel execution requires precise description of dependencies

11/38

State of the art

In the rest of the talk comparison with

Very popular production tool

• [Ansible] https: // www. ansible. com/ .

Closest contribution in the literature

• [Aeolus] Aeolus: a component model for the Cloud. Di Cosmo, Roberto and
Mauro, Jacopo and Zacchiroli, Stefano and Zavattaro, Gianluigi. In Information
and Computation, 2014.

12/38

https://www.ansible.com/

Concerto

Contributions

[3] Predictable Efficiency for Reconfiguration of Service-Oriented Systems with Concerto. Maverick
Chardet, Hélène Coullon, Christian Perez. In CCGrid 2020.

[4] Toward Safe and Efficient Reconfiguration with Concerto. Maverick Chardet, Hélène Coullon,
Simon Robillard. In journal SCP, 2020.

[5] Enhancing Separation of Concerns, Parallelism, and Formalism in Distributed Software Deployment
with Madeus. Maverick Chardet, Hélène Coullon, Christian Perez, Dimitri Pertin, Charlène Servantie,
Simon Robillard. In journal JSS. [minor revision]

[6] Integrated Model-checking for the Design of Safe and Efficient Distributed Software
Commissioning. Hélène Coullon, Didier Lime, Claude Jard. In iFM 2019, Bergen, Norway.

13/38

Concerto - (1/2) control components

y Written by the component developers

Server

uninstalled
install

suspend

database_ip

database

running

installed

configured

paused

service

Internal net

• places = milestones

• transitions = actions to perform
• concretely: scripts are attached to transitions
• in the model: exact nature/effects of actions

not represented, only coordination

14/38

Concerto - (1/2) control components

y Written by the component developers

Server

uninstalled
install

suspend

database_ip

database

running

installed

configured

paused

service Interfaces

• data or service ports
• use ports = requirements
• provide ports = provisions
• during execution: active/inactive

• behaviors
• subset of transitions
• during execution: active/inactive

14/38

Control components in practice

y Written by the component developers

1 c l a s s S e r v e r (Component) :
2 de f c r e a t e (s e l f) :
3 s e l f . p l a c e s = [’ u n i n s t a l l e d ’ , ’ i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , ’ r unn i ng ’ , ’ paused ’]
4
5 s e l f . i n i t i a l _ p l a c e = ’ u n i n s t a l l e d ’
6
7 s e l f . b e h a v i o r s = [’ b_ i n s t a l l ’ , ’ b_suspend ’]
8
9 s e l f . t r a n s i t i o n s = {

10 ’ i n s t a l l 1 ’ : (’ u n i n s t a l l e d ’ , ’ i n s t a l l e d ’ , ’ b_ i n s t a l l ’ , s e l f . i n s t a l l 1) ,
11 ’ i n s t a l l 2 ’ : (’ u n i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , ’ b_ i n s t a l l ’ , s e l f . i n s t a l l 2) ,
12 ’ c o n f i g u r e ’ : (’ i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , ’ b_ i n s t a l l ’ , s e l f . c o n f i g u r e) ,
13 ’ s t a r t ’ : (’ c o n f i g u r e d ’ , ’ r unn i ng ’ , ’ b_ i n s t a l l ’ , s e l f . s t a r t) ,
14 ’ suspend1 ’ : (’ r unn i ng ’ , ’ paused ’ , ’ b_suspend ’ , s e l f . suspend1) ,
15 ’ suspend2 ’ : (’ paused ’ , ’ c o n f i g u r e d ’ , ’ b_suspend ’ , s e l f . suspend2)
16 }

15/38

Control components in practice

y Written by the component developers

1 c l a s s S e r v e r (Component) :
2 de f c r e a t e (s e l f) :
3 . . .
4
5 s e l f . d ependenc i e s = {
6 ’ database_ip ’ : (DepType .USE , [’ i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , ’ r unn i ng ’ , ’ paused ’]) ,
7 ’ da tabase ’ : (DepType .USE , [’ r unn i ng ’ , ’ paused ’]) ,
8 ’ s e r v i c e ’ : (DepType .PROVIDE , [’ r unn i ng ’])
9 }

10
11 # D e f i n i t i o n o f the a c t i o n s
12 de f i n s t a l l 1 (s e l f) :
13 remote = SSHCl ient ()
14 remote . connect (host , use r , pwd)
15 remote . exec_command (cmd)
16 . . .

15/38

Execution semantics of a control component

“Petri net” style of semantics

• can be in multiple places at once

• transitions not atomic

• can execute multiple transitions at once

Coordination via ports

• use port need to be provided before
reaching places

• places cannot be left while provide ports
are used

16/38

Execution semantics of a control component

“Petri net” style of semantics

• can be in multiple places at once

• transitions not atomic

• can execute multiple transitions at once

Coordination via ports

• use port need to be provided before
reaching places

• places cannot be left while provide ports
are used

16/38

Execution semantics of a control component

“Petri net” style of semantics

• can be in multiple places at once

• transitions not atomic

• can execute multiple transitions at once

Coordination via ports

• use port need to be provided before
reaching places

• places cannot be left while provide ports
are used

16/38

Execution semantics of a control component

“Petri net” style of semantics

• can be in multiple places at once

• transitions not atomic

• can execute multiple transitions at once

Coordination via ports

• use port need to be provided before
reaching places

• places cannot be left while provide ports
are used

16/38

Execution semantics of a control component

“Petri net” style of semantics

• can be in multiple places at once

• transitions not atomic

• can execute multiple transitions at once

Coordination via ports

• use port need to be provided before
reaching places

• places cannot be left while provide ports
are used

16/38

Execution semantics of a control component

“Petri net” style of semantics

• can be in multiple places at once

• transitions not atomic

• can execute multiple transitions at once

Coordination via ports

• use port need to be provided before
reaching places

• places cannot be left while provide ports
are used

16/38

Execution semantics of a control component

“Petri net” style of semantics

• can be in multiple places at once

• transitions not atomic

• can execute multiple transitions at once

Coordination via ports

• use port need to be provided before
reaching places

• places cannot be left while provide ports
are used

16/38

Execution semantics of a control component

“Petri net” style of semantics

• can be in multiple places at once

• transitions not atomic

• can execute multiple transitions at once

Coordination via ports

• use port need to be provided before
reaching places

• places cannot be left while provide ports
are used

16/38

Execution semantics of a control component

“Petri net” style of semantics

• can be in multiple places at once

• transitions not atomic

• can execute multiple transitions at once

Coordination via ports

• use port need to be provided before
reaching places

• places cannot be left while provide ports
are used

16/38

Is this reconfiguration?

Control component and its semantics

• life-cycle evolution through time

• coordination with other life-cycles

reconfiguration

• not sufficient for reconfiguration

• need for a reconfiguration language to modify an assembly of component instances

• need to manipulate sequences of behaviors

17/38

Is this reconfiguration?

Control component and its semantics

• life-cycle evolution through time

• coordination with other life-cycles

reconfiguration

• not sufficient for reconfiguration

• need for a reconfiguration language to modify an assembly of component instances

• need to manipulate sequences of behaviors

17/38

Concerto - (2/2) reconfiguration language

Add
Add a component instance to the current assembly

Remove
Remove a component instance from the current assembly

Connect
Connect two component instances with compatible ports

Disconnect
Disconnect two component instances

Push behavior
Push a behavior to the behavior queue on a component instance

Wait
Wait for a given behavior of a component instance

18/38

Reconfiguration language semantics

y Written by the reconfiguration developer

Deployment program
1 add(server: Server)
2 add(db: Database)
3 con(server.database_ip ,db.ip)
4 con(server.database ,db.service)
5 pushB(server , install)
6 pushB(db , deploy)
7 wait(server)

server: Server

uninstalled install
suspend

database_ip

database

running

installed

configured

paused

behaviors:

service

19/38

Reconfiguration language semantics

y Written by the reconfiguration developer

Deployment program
1 add(server: Server)
2 add(db: Database)
3 con(server.database_ip ,db.ip)
4 con(server.database ,db.service)
5 pushB(server , install)
6 pushB(db , deploy)
7 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

19/38

Reconfiguration language semantics

y Written by the reconfiguration developer

Deployment program
1 add(server: Server)
2 add(db: Database)
3 con(server.database_ip ,db.ip)
4 con(server.database ,db.service)
5 pushB(server , install)
6 pushB(db , deploy)
7 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

19/38

Reconfiguration language semantics

y Written by the reconfiguration developer

Deployment program
1 add(server: Server)
2 add(db: Database)
3 con(server.database_ip ,db.ip)
4 con(server.database ,db.service)
5 pushB(server , install)
6 pushB(db , deploy)
7 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

19/38

Reconfiguration language semantics

y Written by the reconfiguration developer

Maintenance program
1 pushB(db , maintain)
2 pushB(db , deploy)
3 pushB(server , suspend)
4 pushB(server , install)
5 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

20/38

Reconfiguration language semantics

y Written by the reconfiguration developer

Maintenance program
1 pushB(db , maintain)
2 pushB(db , deploy)
3 pushB(server , suspend)
4 pushB(server , install)
5 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

20/38

Reconfiguration language semantics

y Written by the reconfiguration developer

Maintenance program
1 pushB(db , maintain)
2 pushB(db , deploy)
3 pushB(server , suspend)
4 pushB(server , install)
5 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

20/38

Reconfiguration language in practice

y Written by the reconfiguration developer

1 c l a s s S e r v e r C l i e n t (Assembly) :
2 de f __init__(s e l f) :
3 s e l f . s e r v e r = Se r v e r ()
4 s e l f . da tabase = Database ()
5 Assembly . __init__(s e l f)
6
7 de f dep l oy (s e l f) :
8 s e l f . add_component (’ da tabase ’ , s e l f . da tabase)
9 s e l f . add_component (’ s e r v e r ’ , s e l f . s e r v e r)

10 s e l f . connect (’ s e r v e r ’ , ’ database_ip ’ , ’ da tabase ’ , ’ i p ’)
11 s e l f . connect (’ s e r v e r ’ , ’ da tabase ’ , ’ da tabase ’ , ’ s e r v i c e ’)
12 s e l f . push_b (’ s e r v e r ’ , ’ i n s t a l l ’)
13 s e l f . push_b (’ da tabase ’ , ’ d ep l oy ’)
14 s e l f . w a i t_a l l ()

21/38

Reconfiguration language in practice

y Written by the reconfiguration developer

1 c l a s s S e r v e r C l i e n t (Assembly) :
2 . . .
3
4 de f ma in ta i n (s e l f) :
5 s e l f . push_b (’ da tabase ’ , ’ ma in ta i n ’)
6 s e l f . push_b (’ da tabase ’ , ’ d ep l oy ’)
7 s e l f . push_b (’ s e r v e r ’ , ’ suspend ’)
8 s e l f . push_b (’ s e r v e r ’ , ’ i n s t a l l ’)
9 s e l f . w a i t_a l l ()

21/38

Performance prediction

Inputs

• reconfiguration program

• time estimations for transitions

Dependency graph generation

• nodes for events such as
reaching/leaving place, firing transition

• transition arcs are weighted to reflect
execution time

• other arcs are 0-weighted

22/38

Performance prediction

Critical path

• length = reconfiguration time
(assuming hardware can execute as
many concurrent threads as needed)

• highlights the transitions that should
be optimized

23/38

A few results

Evaluation on the deployment of OpenStack

• subpart of OpenStack: 11 components, 36 services in total
• Comparison to Kolla-Ansible (production tool), and Aeolus (literature)
• Reproducible experiments on Grid’5000

24/38

https://gitlab.inria.fr/VeRDi-project/madeus-journal

Evaluation on the deployment of OpenStack

Results on three nodes Ecotype (Nantes) of Grid’5000

25/38

Evaluation on the deployment of OpenStack

[concerto]

[ansible]

[aeolus]

26/38

Evaluation on the deployment of OpenStack

• Traces of the OpenStack continuous Integration platform

• February 19 to February 27 2020

• Exactly 2963 deployments of OpenStack have been recorded (329 runs per day)

• Projection of the gain with deployment times of our experiments in remote mode

Kolla Madeus gain

reference time(s) 529 150 71%
projection on 9 days(h) 435 123 71%
projection on av./day(h) 48 14 71%

27/38

Evaluation on the reconfiguration of MariaDB

Real use-case extracted from the OpenStack Summit 2018 on a multi-region deployment of OpenSatck

Initial state

• centralized MariaDB running

• additional nodes running some generic components (docker, pip. . .)

decentralization

• replaces centralized DB with a distributed version with instances on n nodes

• requires a backup of the data, and a restart of the master node

scaling

• deploys m new nodes with an instance of the distributed DB

Reproducible experiments
28/38

https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
https://gitlab.inria.fr/VeRDi-project/concerto-evaluation

Evaluation on the reconfiguration of MariaDB

Results on nodes of UvB (Sophia) of Grid’5000

Decentralization

3 5 10 20
Size of the cluster

20

30

40

50

60

70

Ti
m

e
(s

)

Ansible
Aeolus
Aeolus (est.)
Concerto
Concerto (est.)

Scaling

1 5 10 20
Number of nodes added

20

25

30

35

40

45

50

55

Ti
m

e
(s

)

Ansible
Aeolus
Aeolus (est.)
Concerto
Concerto (est.)

29/38

Verification of properties

Verification of deployments

Hypothesis: the deployment of a distributed software system already exists and the
developer wants to use Madeus to enhance its efficiency

1. how to enhance the efficiency without running the deployment?

2. how to avoid safety issues such as deadlocks without running the deployment?

Goal
Study the use of model checking to help in the two above challenges

30/38

Verification of deployments

• Qualitative properties

• Quantitative properties

y
Sysadmin

Madeus assembly Properties

TimePN compiler TCTL compiler

Model Checker Translator

writes

31/38

Properties (1/2)

• Time Petri nets are used
• intervals of time given for each transition representing a Madeus transition

1 def set_interval(self , component , transition , min , max)
2 def add_deployment(self , name , dict_componentsplaces)

• High Abstraction Level Properties (HALP)
• qualitative properties
• quantitative properties

1 def deployability(self , deployment_name , with_intervals)
2 def sequentiality(self , ordered_list_components_transition)
3 def forbidden(self , list_marked , list_unmarked)
4 def parallelism(self , full_assembly , list_components)
5 def gantt_boundaries(self , deployment_name , mini , maxi , critical)

32/38

Properties (2/2)

HALP automatically transformed to TCTL (Time Computational Tree Logic) formulae

Qualitative properties

• deployability −→ inevitability

• sequentiality −→ observer subnet + invariant

• forbidden −→ observer subnet + invariant

Quantitative properties

• parallelism −→ max(
∑

(reachable markings))

• gantt boundaries: min/max costs + causality in the trace to get the critical path

33/38

Evaluation (1/2)

5 versions of the OpenStack deployment successively enhanced with MADA

v0

deadlock

v1

nova improvement

v2

nova wrong dep

v3

mbd improvement

v4

neutron improvement

MADA MADA MADA MADA MADA

34/38

Evaluation (2/2)

Experiments conducted with the model checker Romeo

0-deadlock 1-naive 2-nova 3-nova 4-nova-mdb

Madeus places 27 27 28 28 29
Madeus transitions 22 22 25 25 28
Madeus connections 30 30 30 30 30
Petri net places 113 113 124 124 134
Petri net transitions 75 75 84 84 92
Transformation time (ms) 1.6 1.6 1.8 1.7 1.5

Deployability False True True True True
Resolution time (s) 0 41.6 78.7 88.7 152.6

Parallelism nova - 1 2 2 2
Resolution time (s) - 42.1 82.7 93.6 154.3
Parallelism full - 10 11 11 12
Resolution time (s) - 43.2 86.1 98.4 162.9
Gantt & critical path - Fig Fig Fig Fig
Resolution time (s) - 130.1 266.9 275.4 588.1
Boundaries - [575,615] [518,554] [400,423] [377,398]
Resolution time (s) - 130.1, 128.8 266.9, 269.7 275.4, 267.6 588.1, 580.8

35/38

http://romeo.rts-software.org/

Formal methods for reconfigurations?

Simon Robillard, postdoc

Verification of Concerto programs

• bigger search space for Concerto with behaviors

• find the minimal interface needed for verification without entering a component

• verification by composition

Verification in the (P) phase

• inputs: partial specification of the reconfiguration
• current configuration
• target configuration
• subset of behaviors to apply

• output: complete and correct reconfiguration plan
36/38

Perspectives

Perspectives

• Inference of correct-by-design Concerto programs (P)

• Inference of correct-by-design target configuration (A)
• inputs: current configuration and monitored events
• output: new target configuration

• Abstraction level for developers to ease the use of Concerto
• control component patterns
• reconfiguration patterns

• Integration in well known devops tools
• work in progress with Madeus and Ansible
• ongoing project on Kubernetes

37/38

SeMaFoR project - Distributed autonomic reconfiguration

M A

PE

K

M A

PE

K

K

E P

AM

K

E P

AM

SeMaFoR project

• Led by Thomas Ledoux

• Self Management of Fog Resources

• Work-package leader on decentralized
reconfiguration

• Hiring one postdoc starting in March 2022

38/38

	Introduction
	Motivation and state of the art
	Concerto
	A few results
	Verification of properties
	Perspectives

