Predictable Efficiency for Reconfiguration of

Service-Oriented Systems with Concerto

Maverick Chardet (IMT Atlantique), Christian Pérez (Inria)
Hélene Coullon

'u I Associate professor at IMT Atlantique, France
v d
Vd .
2L Inria researcher, France
£,
%%fx Adjunct professor at UiT, Tromsg, Norway
% v

1/26

Introduction

State of the art

The CONCERTO reconfiguration mode
Evaluation

Conclusion

2/26

Table of Contents

Introduction

3/26

ibuted software systems

General definition
e Non monolithic code,
e modular units of code - components,
e software system = architectural assembly of component instances,

e interactions between components through communications.

e Master/workers,

>—[B]—0 C] e microservices,
e service-oriented,
e layered,
e etc.

4/26

Deployment, management, reconfiguration

Ever-running and long-running distributed systems
What is a reconfiguration?

e Reconfiguration through time

e need to add/remove components and/or connections
e need to change internal configurations

e A set of instructions to move from one state of the system to another.

Examples of reconfiguration reasons
e Faults or errors on services or hardware (e.g., re-deploy),
e dynamic energy or security constraints (e.g., change the set of components),
e dynamic improvement of performance (e.g., scaling),

e dynamic upgrade of some modules.
5/26

1. Efficiency of the reconfiguration

e reach quickly a targeted configuration,
o dynamic security requirements, more frequent reconfigurations (e.g., Fog Edge) etc.
e reduce disruption time

o frequent faults or disconnections etc.

2. Execution time prediction
e better decisions on "when to perform the reconfiguration?”

e better decisions on "how to schedule concurrent reconfigurations?”

6/26

Table of Contents

State of the art

7/26

Lifecycle

Contributions with a lifecycle abstraction

o fixed lifecycle: TOSCA, DEPLOYWARE, SMARTFROG, ENGAGE

e casier to use, less flexible

e programmable lifecycle: AroLus, AnsiBLE (DevOps configuration tool)

e more difficult to use, more flexible

Machine 1 [WHERE]

Database (DB) [WHAT]

[HOW] [LIFECYCLE]

1.

Install

. Configure

2
3.
4

Start the service

. Prepare the service

Machine 2 [WHERE]
Web-server (WS) [WHAT]

[HOW] [LIFECYCLE]

1.

2
3
4.
5

. Start the service

Install

. Configure firewall

. Download

Configure parameters
8/26

4 levels of dependencies
1. same component level:
2. component level: ToscA, DEPLOYWARE
3. lifecycle level: ToscA, ENGAGE,
4

. intra-lifecycle level:

9/26

Performance through parallelism and dependencies

levell: multiple nodes, same action
e no dependencies declared
e procedural execution order
e parallelism for the same component

e ANSIBLE

B 1
1o
Tb3

B
B

Node Y

10/26

Performance through parallelism and dependencies

level2: levell+non-dependent components
e dependencies at the component leve

e DEPLOYWARE, (basic) ToscA, ENGAGE

B te Cte || Cla

IEEIRE

N
11/26

Performance through parallelism and dependencies

level3: levell + level2 4+ inter-component

e dependencies at the lifecycle level between components

e (advanced) Tosca, AEOLUS

cl

—_— > —>

cl

_— > —>

Node X

Node 1

Node 2

12/26

Performance through parallelism and dependencies

level 4: levell + level2 + level3 + intra-component
e parallelism within the lifecycle of one component

e CONCERTO

A B C C
AR e

A0 e] Tl]
1

T b1 Node 1 Node 2

Node X Node Y

The finer the dependencies granularity is, the better is the efficiency
13/26

Table of Contents

The CONCERTO reconfiguration mode

14/26

Control components

°
f Written by the component developers

Internal net [LIFECYCLE]

database service

e places = milestones
e transitions = actions to perform

database_ip

e concretely: scripts are attached to transitions

e in the model: exact nature/effects of actions not
represented, only coordination

install
suspenc

uninstalled

Server

15/26

Control components

[]
f Written by the

Interfaces [DEPENDENCIES]

e data or service ports
e use ports = requirements
e provide ports = provisions
e during execution: active/inactive

database service

database_ip

e behaviors
e subset of transitions
e during execution: active/inactive

install

uninstalled
suspenc

Server

15/26

Control components in practice

°
f Written by the component developers

1 class Server(Component):

2 def create(self):

3 self.places = ["uninstalled’, 'installed ', 'configured', 'running’', 'paused’]
4

5 self.initial_place = "uninstalled’

6

7 self .behaviors = ['b_install’, 'b_suspend’]

8

9 self.transitions = {

10 "installl’': ("uninstalled’,'installed’, b_install’' self.installl),
11 "install2': ('uninstalled ', 'configured’, 'b_install’', self.install2),
12 "configure': ('installed ', 'configured', 'b_install’', 6 self.configure),
13 "start': ('configured’, 'running’',6 'b_install’, self.start),

14 "suspendl’: (’'running’, 'paused’,’'b_suspend’, self.suspendl),

15 "suspend2’': ('paused’, 'configured',6 'b_suspend’, self.suspend2)

16 1

16/26

Control components in practice

°
f Written by the component developers

1 class Server(Component):

2 def create(self):

3

4

5 self.dependencies = {

6 "database_ip': (DepType.USE, [’'installed ', 'configured’, 'running’, 'paused’]),
7 "database’: (DepType.USE, [’'running’, 'paused’]),
8 "service ': (DepType.PROVIDE, ['running'])

o }

10

11 # Definition of the actions

12 def installl(self):

13 remote = SSHClient ()

14 remote.connect (host, user, pwd)

15 remote . exec_.command (cmd)

16

16/26

Reconfiguration language

Add/remove
Add/remove a component instance to the current assembly

Connect/disconnect
Connect/disconnect two component instances with compatible ports

Push behavior
Push a behavior to the behavior queue on a component instance

Wait
Wait for a given behavior of a component instance

17/26

Reconfiguration example - deployment

[]
f Written by the reconfiguration developer

service

Deployment program: database

1 add(server: Server)
add (db: Database)

con(server.database_ip ,db.ip)

con(server.database ,db.service) database_ip
pushB(server, install)
pushB(db, deploy)

wait (server)

N o g~ W N

install
suspend

uninstalled

server: Server

18/26

Reconfiguration example - deployment

N o g~ W N

Deployment program:

add (server: Server)

add (db: Database)
con(server.database_ip ,db.ip)
con(server.database ,db.service)
install)

deploy)

pushB (server,
pushB (db,
wait (server)

1 Written by the reconfiguration developer

running

). PN
) ®

service database service

allocated
ip
database_ip
undeployed deploy

db: Database

maintain

uninstalled

server: Server

install
suspend

18/26

Reconfiguration example - deployment

N o g~ W N

Deployment program:

add (server: Server)

add (db: Database)
con(server.database_ip ,db.ip)
con(server.database ,db.service)
install)

deploy)

pushB (server,
pushB (db,
wait (server)

1 Written by the reconfiguration developer

running

>). PN
D) 9

service database service

allocated
ip
database_ip
undeployed deploy

db: Database

maintain

uninstalled

server: Server

install
suspend

18/26

Reconfiguration example - deployment

N o g~ W N

Deployment program:

add (server: Server)

add (db: Database)
con(server.database_ip ,db.ip)
con(server.database ,db.service)
install)

deploy)

pushB (server,
pushB (db,
wait (server)

1 Written by the reconfiguration developer

running
)) D
service database service
allocated
ip
database_ip
undeployed deploy

db: Database

maintain

uninstalled

server: Server

install
suspend

18/26

Reconfiguration example - maintenance

aoA W N

Maintenance program:

pushB(db, maintain)
pushB (db,
pushB(server,

deploy)
suspend)
pushB(server, install)

wait (server)

running

Written by the reconfiguration developer

) D

service database

allocated

undeployed

db: Database

"\

database_ip

deploy

maintain

uninstalled

server: Server

service

install
suspend

19/26

Reconfiguration example - maintenance

aoA W N

Maintenance program:

pushB(db, maintain)
pushB(db, deploy)
suspend)
install)

pushB(server,
pushB (server,

wait (server)

running

Written by the reconfiguration developer

) D)

allocated

undeployed

db: Database

service database
b)\.

database_ip
deploy

maintain

uninstalled

server: Server

service

install
suspend

19/26

Reconfiguration example - maintenance

aoA W N

Maintenance program:

pushB(db, maintain)
pushB(db, deploy)
pushB(server, suspend)
pushB(server, install)

wait (server)

Written by the reconfiguration developer

undeployed

db: Database

deploy

maintain

database_ip

uninstalled

server: Server

service

install
suspend

19/26

Performance prediction

Inputs:
e reconfiguration program

e time estimations for transitions

Dependency graph generation

e nodes for events such as
reaching/leaving place, firing
transition

e transition arcs are weighted to reflect

execution time

e other arcs are O-weighted

20/26

Performance prediction

Critical path

e length = reconfiguration time
(assuming hardware can execute as
many concurrent threads as needed)

e highlights the transitions that should
be optimized

21/26

Table of Contents

Evaluation

22/26

Evaluation on the reconfiguration of MariaDB

Real use-case extracted from the on a multi-region deployment of OpenSatck
Initial state

e centralized MariaDB running

e additional nodes running some generic components (docker, pip...)
decentralization

e replaces centralized DB with a distributed version with instances on n nodes

e requires a backup of the data, and a restart of the master node

scaling

e deploys m new nodes with an instance of the distributed DB

23/26

https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
https://gitlab.inria.fr/VeRDi-project/concerto-evaluation

Evaluation on the reconfiguration of MariaDB

Results on nodes of UvB (Sophia) of Grid’5000 (2x6-core Intel Xeon X5670 CPUs,
96 GB RAM, 250 GB HDD, internal 40 Gbps InfiniBand, external 1 Gbps).

Decentralization
mmm Ansible
70 WEE Aeolus
wem Aeolus (est.)
mmm Concerto
wems Concerto (est.)
60 1
@50
o
£
[
40
301

3 5 10 20
Size of the cluster

55

50

45

304

254

20

Scaling

mm Ansible

Emm Aeolus

WA Aeolus (est.)
EEm Concerto

@ Concerto (est.)

1 5 10 20 24/26

Number of nodes added

Table of Contents

Conclusion

25/26

Conclusion

Conclusion

e Need for software engineering practices in reconfiguration (DevOps community)
e Need for efficiency and execution time prediction

e reach quickly the new state
e reduce disruption time

e Presentation of CONCERTO and its performance prediction model

e Evaluation on synthetic use-cases (see the paper) and a real use-case

Perspectives

e Automatic generation of a CONCERTO program from a goal
e Using CONCERTO to reconfigure cyber-physical systems and edge devices

e PhD oppotunity! Contact me helene.coullon[at]imt-atlantique.fr

26/26

helene.coullon[at]imt-atlantique.fr

	Introduction
	State of the art
	The Concerto reconfiguration model
	Evaluation
	Conclusion

