
Execution and Planning of Distributed Systems

Reconfigurations

ICE Workshop @DisCoTec, 18th of June 2021

Hélène Coullon (Maverick Chardet, Simon Robillard, Dimitri Pertin, Christian Perez, Claude

Jard, Didier Lime, Charlène Servantie)

Associate professor at IMT Atlantique, France

Inria researcher, France

Adjunct professor at UiT, Tromsø, Norway

Introduction and motivations

Distributed software systems

General definition

• Non monolithic code,

• modular units of code - components,

• software system = architectural assembly of component instances,

• interactions between components through communications.

• Master/workers,

• microservices,

• service-oriented,

• layered,

• etc.

1/28

Deployment example

<< use >>

Web
Server

Database

Machine 1 [WHERE]

Database (DB) [WHAT]

[HOW] [LIFECYCLE]

1. Install

2. Configure

3. Start the service

4. Prepare the service

Machine 2 [WHERE]

Web-server (WS) [WHAT]

[HOW] [LIFECYCLE]

1. Install

2. Configure firewall

3. Download

4. Configure parameters

5. Start the service

[WHEN][DEPENDENCIES]: DB � WS (component granularity)

[DEPENDENCIES]: DB(3) � WS(4), DB(4) � WS(5) (lifecycle granularity) 2/28

Management and reconfiguration

Ever-running and long-running distributed systems

What is a reconfiguration?

• Reconfiguration through time

• need to add/remove components and/or connections

• need to change internal configurations

• A set of instructions to move from one state of the system to another.

Examples of reconfiguration reasons

• Faults or errors on services or hardware (e.g., re-deploy),

• dynamic energy or security constraints (e.g., change the set of components),

• dynamic improvement of performance (e.g., scaling),

• dynamic upgrade of some modules.
3/28

Reconfiguration example

<< use >>

Web
Server

Database

Database (DB) [WHAT]

[HOW] [LIFECYCLE]

1. Backup data

2. Stop the service

3. Download update

4. Configure parameters

5. Start the service

6. Restore data

Web-server (WS) [WHAT]

[HOW] [LIFECYCLE]

1. Pause the service

2. Configure parameters

3. Start the service

[DEPENDENCIES]: WS(1) � DB(2), DB(5) � WS(2), DB(6) � WS(3) (lifecycle

granularity)
4/28

Our goals

1. Efficiency of reconfigurations

• reach quickly a targeted configuration,

• reduce disruption time.

2. Execution time prediction

3. Safety of reconfigurations

5/28

Table of Contents

1. The Concerto reconfiguration model

2. Model-checking on a Concerto deployment program

3. Synthesis of Concerto reconfiguration programs

4. Conclusion and perspectives

6/28

The Concerto reconfiguration model

Control components

Server

uninstalled
install

suspend

database_ip

database

running

installed

configured

paused

service

y Written by the component developers

Internal net [LIFECYCLE]

• places = milestones

• transitions = concrete actions to perform

Interfaces [DEPENDENCIES]

• data or service ports

• use ports = requirements

• provide ports = provisions

• behaviors

• subset of transitions

• during execution: active/inactive
7/28

Reconfiguration language

1. Create assemblies of components (software system)

2. Make this assembly evolve at runtime

3. Interact with the lifecycle of components

Add/remove
Add/remove a component instance to the current assembly

Connect/disconnect
Connect/disconnect two component instances with compatible ports

Push behavior
Push a behavior to the behavior queue on a component instance

Wait
Wait for a given component instance or wait all components

8/28

Reconfiguration example - deployment

y Written by the reconfiguration developer

Deployment program:

1 add(server: Server)

2 add(db: Database)

3 con(server.database_ip ,db.ip)

4 con(server.database ,db.service)

5 pushB(server , install)

6 pushB(db, deploy)

7 wait(server)

server: Server

uninstalled install
suspend

database_ip

database

running

installed

configured

paused

behaviors:

service

9/28

Reconfiguration example - deployment

y Written by the reconfiguration developer

Deployment program:

1 add(server: Server)

2 add(db: Database)

3 con(server.database_ip ,db.ip)

4 con(server.database ,db.service)

5 pushB(server , install)

6 pushB(db, deploy)

7 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

9/28

Reconfiguration example - deployment

y Written by the reconfiguration developer

Deployment program:

1 add(server: Server)

2 add(db: Database)

3 con(server.database_ip ,db.ip)

4 con(server.database ,db.service)

5 pushB(server , install)

6 pushB(db, deploy)

7 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

9/28

Reconfiguration example - deployment

y Written by the reconfiguration developer

Deployment program:

1 add(server: Server)

2 add(db: Database)

3 con(server.database_ip ,db.ip)

4 con(server.database ,db.service)

5 pushB(server , install)

6 pushB(db, deploy)

7 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

9/28

Reconfiguration example - deployment

y Written by the reconfiguration developer

Deployment program:

1 add(server: Server)

2 add(db: Database)

3 con(server.database_ip ,db.ip)

4 con(server.database ,db.service)

5 pushB(server , install)

6 pushB(db, deploy)

7 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

9/28

Reconfiguration example - deployment

y Written by the reconfiguration developer

Deployment program:

1 add(server: Server)

2 add(db: Database)

3 con(server.database_ip ,db.ip)

4 con(server.database ,db.service)

5 pushB(server , install)

6 pushB(db, deploy)

7 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

9/28

Reconfiguration example - deployment

y Written by the reconfiguration developer

Deployment program:

1 add(server: Server)

2 add(db: Database)

3 con(server.database_ip ,db.ip)

4 con(server.database ,db.service)

5 pushB(server , install)

6 pushB(db, deploy)

7 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

9/28

Reconfiguration example - maintenance

y Written by the reconfiguration developer

Maintenance program:

1 pushB(db, maintain)

2 pushB(db, deploy)

3 pushB(server , suspend)

4 pushB(server , install)

5 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

10/28

Reconfiguration example - maintenance

y Written by the reconfiguration developer

Maintenance program:

1 pushB(db, maintain)

2 pushB(db, deploy)

3 pushB(server , suspend)

4 pushB(server , install)

5 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

10/28

Reconfiguration example - maintenance

y Written by the reconfiguration developer

Maintenance program:

1 pushB(db, maintain)

2 pushB(db, deploy)

3 pushB(server , suspend)

4 pushB(server , install)

5 wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

10/28

Performance prediction

Inputs:

• reconfiguration program

• time estimations for transitions

Output: execution time prediction

Solution:

1. Dependency graph Generalization

2. Critical path computation (longest

path)

11/28

Evaluation on the deployment of OpenStack

Deployment of a minimal OpenStack: 11 components, 36 services in total

concerto

• Results on three nodes Ecotype

(Nantes) of Grid’5000

• Comparison to Kolla-Ansible

(production tool), and Aeolus

(literature)

• Reproducible experiments on

Grid’5000

12/28

https://gitlab.inria.fr/VeRDi-project/madeus-journal
https://gitlab.inria.fr/VeRDi-project/madeus-journal

Evaluation on the deployment of OpenStack

[concerto]

[ansible]

[aeolus]

13/28

Evaluation on the reconfiguration of MariaDB

Real use-case extracted from the OpenStack Summit 2018

Initial state: centralized MariaDB running

3 5 10 20
Size of the cluster

20

30

40

50

60

70

Ti
m

e
(s

)

Ansible
Aeolus
Aeolus (est.)
Concerto
Concerto (est.)

decentralization

• replaces centralized DB with a Galera cluster

• requires a backup of the data, and a restart of the

master node

Results on nodes of UvB (Sophia) of Grid’5000 (2×6-core Intel Xeon

X5670 CPUs, 96 GB RAM, 250 GB HDD, internal 40 Gbps InfiniBand,

external 1 Gbps)

Reproducible experiments

14/28

https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
https://gitlab.inria.fr/VeRDi-project/concerto-evaluation

Model checking on a Concerto

deployment program

Verification of deployments

Hypothesis: the deployment of a distributed software system is written in Concerto

and the developer wants to verify its safety and enhance its efficiency

server: Server

uninstalled

service

install

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy

behavi or s:behavi or s:

service

1. how to verify some safety properties on the

deployment assembly?

2. how to enhance the efficiency without running

the deployment many times?

Goal: Study the use of model checking to help solving the challenges.

15/28

Verification of deployments

y
Reconf. dev.

Concerto assembly Properties

TimePN compiler TCTL compiler

Model Checker Translator

writes

Qualitative properties

• deployability (inevitability)

• sequentiality (observer subnet)

• forbidden (observer subnet)

Quantitative properties

• parallelism

max(
∑

(reachable markings))

• gantt boundaries

min/max costs + causality

16/28

Evaluation (1/2)

5 versions of the OpenStack deployment successively enhanced with the tool

v0

deadlock

v1

nova improvement

v2

nova wrong dep

v3

mbd improvement

v4

neutron improvement

17/28

Evaluation (2/2)

Experiments conducted with the model checker Romeo

0-deadlock 1-naive 2-nova 3-nova 4-nova-mdb

Concerto places 27 27 28 28 29

Concerto transitions 22 22 25 25 28

Concerto connections 30 30 30 30 30

Petri net places 113 113 124 124 134

Petri net transitions 75 75 84 84 92

Transformation time (ms) 1.6 1.6 1.8 1.7 1.5

Deployability False True True True True

Resolution time (s) 0 41.6 78.7 88.7 152.6

Parallelism nova - 1 2 2 2

Resolution time (s) - 42.1 82.7 93.6 154.3

Parallelism full - 10 11 11 12

Resolution time (s) - 43.2 86.1 98.4 162.9

Gantt & critical path - Fig Fig Fig Fig

Resolution time (s) - 130.1 266.9 275.4 588.1

Boundaries - [575,615] [518,554] [400,423] [377,398]

Resolution time (s) - 130.1, 128.8 266.9, 269.7 275.4, 267.6 588.1, 580.8

18/28

http://romeo.rts-software.org/

Generalization to Concerto?

Generalization of the approach to Concerto?

• difficult to generalize to any reconfiguration program because of the state

explosion when handling the combination of multiple behaviors per components;

• other kinds of reconfiguration patterns may be studied such as scaling, rolling

upgrade etc., but may not offer an acceptable solving time.

Synthesis

Instead of verifying a Concerto reconfiguration program, we synthesize a correct

reconfiguration program.

19/28

Synthesis of Concerto

reconfiguration programs

Reconfiguration synthesis

Work of Simon Robillard, postdoc (associate professor in Montpellier starting in September)

Reconfiguration synthesis

• input: a reconfiguration goal

• set of behaviors to execute on designated components

• constraints on the final state of ports

• output: a correct reconfiguration script

• pushB requests

• wait commands

• out of scope: component creations/deletions/(dis)connections

• usual for safety reasons to handle topological changes before and after behaviors

requests and synchronization (e.g., deployment)

Solution: a three-phases algorithm
20/28

Example: updating components

server

uninstalled

service

deploy

suspend

config1

service1

running

sconf1

configured

s2
running

uninstalled

config

dep2

deploy

update

config2

service2

s1

service

running

uninstalled

config

dep1

deploy

update

sconf2

allocated

uninstall

installed

installed

uninstall

uninstall

Reconfiguration goal

1. dep1 and dep2 must execute

update

2. all ports should be active at the

end of the reconfiguration

incomplete list of behaviors, a

partial specification, is enough

21/28

1. Correct and optimal individual component behaviors

• find a sequence of behaviors that satisfies the goal

• enumerate and analyze possible sequences

• no solution =⇒ failure of the procedure

• multiple solutions =⇒ pick one according to some
optimization criterion

• shortest sequence

• shortest estimated execution time

• fewest port requirements
solution for this example
[update, deploy]

22/28

2. Correct global schedule of behaviors

• Goal: find a global schedule

• assumption: reconfiguration plan with steps

• at most 1 behavior per component/step

• each step followed by global synchronization

• problem: assign for each required behavior a

given step to schedule it

1 pushB(server ,suspend)

2 waitAll ()

3 pushB(dep1 ,update)

4 pushB(dep2 ,update)

5 waitAll ()

6 pushB(dep1 ,deploy)

7 pushB(dep2 ,deploy)

8 waitAll ()

9 pushB(server ,deploy)

10 waitAll ()

What is expected in the second phase with 3 steps.

SMT encoding

constraints extracted from the internal nets on sequentiality of behaviors, port

requirements and status, incompatible behaviors etc.

Missing behaviors and missing port requirements are detected during this phase
23/28

3. Correct reduction of the number of synchronizations

Solution get from phase 2

1 pushB(server ,suspend)

2 waitAll ()

3 pushB(dep1 ,update)

4 pushB(dep2 ,update)

5 waitAll ()

6 pushB(dep1 ,deploy)

7 pushB(dep2 ,deploy)

8 waitAll ()

9 pushB(server ,deploy)

10 waitAll ()

Final solution expected from phase 3

1 pushB(server ,suspend)

2 pushB(dep1 ,update)

3 pushB(dep2 ,update)

4 pushB(dep1 ,deploy)

5 pushB(dep2 ,deploy)

6 wait(dep1)

7 wait(dep2)

8 pushB(server ,deploy)

9 wait(server)

1. replace global synchronization barriers by targeted ones

2. delay barriers whenever possible by following correct rules

24/28

OpenStack use case

Reconfiguration scenario
update database & restore system to

working state

Result

• correct reconfiguration script generated in 2.49 seconds

• contains only synchronization barriers that are needed

• 12 behaviors on 5 components 25/28

Conclusion and perspectives

Conclusion

• Complexity of the reconfiguration coordination problem

• Goals: efficiency, safety

• Concerto reconfiguration model

• Model-checking on Concerto deployments

• Concerto reconfiguration program synthesis

• Running use-case on OpenStack

26/28

Perspectives

• Reconfiguration patterns to improve the scalability of verification and synthesis
approaches

• deployment, scaling, rolling upgrade, substitution etc.,

• to combine with component patterns (e.g., Docker containerized component).

• Other aspects of self-adaptation in a safe and efficient manner

M A

PE

K

27/28

Thank you!
[1] Predictable Efficiency for Reconfiguration of Service-Oriented Systems with Concerto. Maverick

Chardet, Hélène Coullon, Christian Perez. In CCGrid 2020.

[2] Toward Safe and Efficient Reconfiguration with Concerto. Maverick Chardet, Hélène Coullon,

Simon Robillard. In journal SCP, 2020.

[3] Enhancing Separation of Concerns, Parallelism, and Formalism in Distributed Software Deployment

with Madeus. Maverick Chardet, Hélène Coullon, Christian Perez, Dimitri Pertin, Charlène Servantie,

Simon Robillard. [preprint]

[4] Integrated Model-checking for the Design of Safe and Efficient Distributed Software

Commissioning. Hélène Coullon, Didier Lime, Claude Jard. In iFM 2019, Bergen, Norway.

[5] Madeus: A formal deployment model. Maverick Chardet, Hélène Coullon, Christian Perez and

Dimitri Pertin. In 4PAD 2018 (hosted at HPCS 2018).

28/28

Backup

Related work

Lifecycle

• fixed lifecycle: Tosca, Deployware, SmartFrog, Engage

• easier to use, less flexible

• programmable lifecycle: Aeolus, Ansible (DevOps configuration tool)

• more difficult to use, more flexible

Dependencies

1. same component level: Ansible

2. component level: Tosca, Deployware (DB � WS)

3. lifecycle level: Tosca, Engage, Aeolus (DB(3) � WS(4))

4. intra-lifecycle level: Concerto

Performance through parallelism and dependencies

level1: multiple nodes, same action

• no dependencies declared

• procedural execution order

• parallelism for the same component

• Ansible

A

B

C C

a1

a2

a3

b1

b2

b3

b4

b5

c1

c2

c3

c1

c2

c3

Node 1 Node 2

Node Y

Node X

Performance through parallelism and dependencies

level2: level1+non-dependent components

• dependencies at the component level (A � B)

• Deployware, (basic) Tosca, Engage

A

B C C

a1

a2

a3

b1

b2

b3

b4

b5

c1

c2

c3

c1

c2

c3

Node 1 Node 2Node Y

Node X

Performance through parallelism and dependencies

level3: level1 + level2 + inter-component

• dependencies at the lifecycle level between components (a3 � b3)

• (advanced) Tosca, Aeolus

A

B C C

wait

c1

c2

c3

c1

c2

c3

b1

b2

b3

b4

b5

a1

a2

a3

Node 1 Node 2

Node X Node Y

Performance through parallelism and dependencies

level 4: level1 + level2 + level3 + intra-component

• parallelism within the lifecycle of one component (b1 � b2)

• Concerto

A B C C

wait

a1

a2

a3

b1

b2

b3 b4 b5

c1

c2

c3

c1

c2

c3

Node X Node Y

Node 1 Node 2

The finer the dependencies granularity is, the better is the efficiency

Control components in practice

y Written by the component developers

1 c l a s s S e r v e r (Component) :

2 d e f c r e a t e (s e l f) :

3 s e l f . p l a c e s = [’ u n i n s t a l l e d ’ , ’ i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , ’ r u n n i n g ’ , ’ paused ’]

4

5 s e l f . i n i t i a l p l a c e = ’ u n i n s t a l l e d ’

6

7 s e l f . b e h a v i o r s = [’ b i n s t a l l ’ , ’ b s u s p e n d ’]

8

9 s e l f . t r a n s i t i o n s = {
10 ’ i n s t a l l 1 ’ : (’ u n i n s t a l l e d ’ , ’ i n s t a l l e d ’ , ’ b i n s t a l l ’ , s e l f . i n s t a l l 1) ,

11 ’ i n s t a l l 2 ’ : (’ u n i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , ’ b i n s t a l l ’ , s e l f . i n s t a l l 2) ,

12 ’ c o n f i g u r e ’ : (’ i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , ’ b i n s t a l l ’ , s e l f . c o n f i g u r e) ,

13 ’ s t a r t ’ : (’ c o n f i g u r e d ’ , ’ r u n n i n g ’ , ’ b i n s t a l l ’ , s e l f . s t a r t) ,

14 ’ suspend1 ’ : (’ r u n n i n g ’ , ’ paused ’ , ’ b s u s p e n d ’ , s e l f . suspend1) ,

15 ’ suspend2 ’ : (’ paused ’ , ’ c o n f i g u r e d ’ , ’ b s u s p e n d ’ , s e l f . suspend2)

16 }

Control components in practice

y Written by the component developers

1 c l a s s S e r v e r (Component) :

2 d e f c r e a t e (s e l f) :

3 . . .

4

5 s e l f . d e p e n d e n c i e s = {
6 ’ d a t a b a s e i p ’ : (DepType . USE , [’ i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , ’ r u n n i n g ’ , ’ paused ’]) ,

7 ’ d a t a b a s e ’ : (DepType . USE , [’ r u n n i n g ’ , ’ paused ’]) ,

8 ’ s e r v i c e ’ : (DepType . PROVIDE , [’ r u n n i n g ’])

9 }
10

11 # D e f i n i t i o n o f t h e a c t i o n s

12 d e f i n s t a l l 1 (s e l f) :

13 remote = SSHCl ient ()

14 remote . c o n n e c t (host , u se r , pwd)

15 remote . exec command (cmd)

16 . . .

Deployments pattern with Concerto

Assumptions

• for each component there is one behavior that leads from an uninstalled place to a

running place, namely deploy;

1 for i in [1,n]

2 add(i)

• the final assembly is specified by the user;

1 connect as specified by the user

Semantics

Simply apply the Concerto semantics on a single behavior per component

1 for i in [1,n]

2 pushB(i, deploy)

3 waitall

Properties (2/2)

HALP automatically transformed to TCTL (Time Computational Tree Logic) formulae

Qualitative properties

• deployability −→ inevitability

• sequentiality −→ observer subnet + invariant

• forbidden −→ observer subnet

Quantitative properties

• parallelism −→ max(
∑

(reachable markings))

• gantt boundaries: min/max costs + causality in the trace to get the critical path

SMT encoding of the scheduling problem 2.

Constraints added to the problem:

sequentiality of behaviors
from step 1. int(schedule(dep1.update)) < int(schedule(dep1.deploy))

port requirements at the beginning of behaviors
¬activeu(schedule(dep1.update))

separation of behaviors with incompatible port effects
schedule(server .deploy) 6= schedule(dep1.update)

port status after behaviors
activep(succ(schedule(dep1.deploy))

Missing port requirements in 2.

Problem: some unsatisfied ports requirements may make scheduling impossible

Example

• we determined that dep1 and dep2 should execute [update, deploy]

• but the updates can’t be executed while the server is relying on the provide ports

Solution:

1. deduce new individual component goals

• go to state that satisfies missing port requirement

• go to state that satisfies final port constraints

2. extend the set of behaviors to schedule and go back to phase 1

	Introduction and motivations
	The Concerto reconfiguration model
	Model checking on a Concerto deployment program
	Synthesis of Concerto reconfiguration programs
	Conclusion and perspectives
	Appendix
	Backup

