
Infrastructure-as-Code Efficiency Decentralization Safety Opening

Challenges in Infrastructure-as-Code
Efficiency, Decentralization and Formalization

by Hélène Coullon (IMT Atlantique, Inria, LS2N - Nantes, France)
on 2025-06-18, Lille
DisCoTec-wide Keynote

[1/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Outline

Infrastructure-as-Code

Efficiency

Decentralization

Safety

Opening

[2/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Past

∗ Since 2016 Associate professor at IMT
Atlantique

∗ 2020-2022 20% Adjunct professor at the
Arctic university of Norway, Tromsø

∗ 2016-2021 Inria research chair

[3/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

Infrastructure-as-Code
∗ Distributed software systems and their deployment
∗ Infrastructure-as-Code
∗ Coordination and declarativity in IaC
∗ Autonomic IaC

[4/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Service-Oriented (SO) Distributed systems (DS)

∗ Loose coupling
components

∗ Use/provide interfaces for
composition

[5/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Service-Oriented (SO) Distributed systems (DS)

∗ Loose coupling
components

∗ Use/provide interfaces for
composition

Microservices architecture - Online boutique

[5/50]

https://github.com/GoogleCloudPlatform/microservices-demo

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Service-Oriented (SO) Distributed systems (DS)

∗ Loose coupling
components

∗ Use/provide interfaces for
composition

OpenStack IaaS operating system

Designing and writing such SO systems: CBSE, SOA,
micro-services architectures, etc.

[5/50]

https://docs.openstack.org/install-guide/get-started-logical-architecture.html

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Deploy and operate SODS

Distributed systems live on distant machines or platforms

[6/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Why is it complex?

[7/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Why is it complex?

[7/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Why is it complex?

Production Test

Dev Beta

webapp

webapp database

webapp

webapp database

webapp

webapp database

webapp

webapp database

+ operate

[7/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Why is it complex?

Production Test

Dev Beta

webapp

webapp database

webapp

webapp database

webapp

webapp database

webapp

webapp database

+ operate

[7/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Infrastructure-as-Code

Infrastructure
Infrastructure refers to the software, platform, or hardware that delivers or
deploys applications [3]

Infrastructure-as-Code
See infrastructure deployment and management as programs or codes

∗ programming languages (DSL)
∗ versioned infrastructures
∗ testable infrastructures
∗ shareable infrastructures

[8/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Infrastructure-as-Code

Infrastructure
Infrastructure refers to the software, platform, or hardware that delivers or
deploys applications [3]

Infrastructure-as-Code
See infrastructure deployment and management as programs or codes

∗ programming languages (DSL)
∗ versioned infrastructures
∗ testable infrastructures
∗ shareable infrastructures

[8/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Infrastructure-as-Code in practice

Provisionning Node & machine
configuration

Install app
+ deps

Configure app Integrate apps Operate app

Operate infrastructure

Build
Packaging

[9/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Ansible

main.yml

roles/common/tasks/main.yml

roles/database/tasks/main.yml

[10/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Ansible

User Ansible CLI Modules

common, copy file, all

Machines
SSH, Python

ssh, cp -r ..
ssh, cp -r ...

common, apt Install, all ?
ssh sudo apt install ...
ssh sudo apt install ...

database, get db, db

database, extract db, db

?ssh wget ...

?ssh tar -xvf ...

ansible-playbook ...

[10/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Terraform/OpenTofu

A

C

Create

plan

B Create

User Terraform CLI
(OpenTofu CLI)

terraform plan/apply

[11/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Terraform/OpenTofu

User Terraform CLI
(OpenTofu CLI)

Terraform Plugin
OpenStack

Infrastructure
OVH

terraform plan/apply A

C

Create

Create

CREATE A API call nova boot 1

CREATE B // CREATE C
API call nova boot 2
API call nova boot 3

plan

B Create

nova boot

commands

nova boot

commands

[11/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Kubernetes

User Kubernetes CLI

kubectl apply

[12/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Kubernetes

Kubernetes CLI apiserver
(etcd)

Controllers
scheduler

Worker nodes
Kubelet

kubectl apply
create pod

notification through watch (pods)

notification through watch (pods)
create

containers

Master node

“Kubernetes in action”, Marko Lukša1

1https://sutlib2.sut.ac.th/sut_contents/H173702.pdf

[12/50]

https://sutlib2.sut.ac.th/sut_contents/H173702.pdf

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Comparison

Coordination Actions Actuators
Ansible sequence+spmd modules modules + ssh

Terraform DAG of actions CRUD plugins + APIs
Kubernetes embarassingly CRUD controllers + apiserver + kubelet

[13/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Declarative IaC
Terraform and Kubernetes are declarative languages!

Specify what is wanted, not how to get it!

I want music that sounds magical

→

[14/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Declarative IaC
Terraform and Kubernetes are declarative languages!

Specify what is wanted, not how to get it!

I want music that sounds magical

→

[14/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Declarativity: a matter of state and plan

.tfstate

Current
State

Desired
State

HCL manifests

Planner

controllerplanner

apiserver

plugins apiserver/kubelet

Actions

[15/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Comparison

Coordination Actions Actuators Declarative
Ansible sequence modules modules + ssh 7

Terraform DAG CRUD plugins + APIs 3

Kubernetes embarassingly CRUD controllers + apiserver 3

[16/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Autonomic IaC (reconfiguration)

∗ M = Monitor
∗ A = Analyze
∗ P = Plan (Declarativity)
∗ E = Execute
∗ K = Knowledge

Orchestration tools achieve the full
reconciliation loop for specific cases like

auto-scaling, or faults.

“The vision of autonomic computing” Kephart et. al., 2003[1]

[17/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Comparison

Coord. Actions Actuators Declarative mapek
Ansible sequence modules mod. + ssh 7 E

Terraform DAG CRUD plugins 3 PEK
Kubernetes embar. CRUD controllers 3 MAPEK

[18/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

Efficiency
∗ Why efficiency?
∗ Concerto
∗ How to make Concerto declarative?

[19/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Why efficiency?

1. Mitigate or recover quickly from a critical situation
∗ faults, unavailabilities
∗ security issues

2. Quickly reach the new desired state
∗ performance, QoS, QoE

3. Accelerate the deployments and change of large systems

[20/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Why efficiency?

1. Mitigate or recover quickly from a critical situation
∗ faults, unavailabilities
∗ security issues

2. Quickly reach the new desired state
∗ performance, QoS, QoE

3. Accelerate the deployments and change of large systems

[20/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Why efficiency?

1. Mitigate or recover quickly from a critical situation
∗ faults, unavailabilities
∗ security issues

2. Quickly reach the new desired state
∗ performance, QoS, QoE

3. Accelerate the deployments and change of large systems

[20/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Why efficiency?

Minimal OpenStack deployment
∗ 11 services

concerto

Artifacts Grid’5000
Up to 70% gain compared to Ansible
During release periods OpenStack can
be deployed hundreds of times a day

Reconf. multi-site OpenStack
∗ OpenStack Summit 2018
∗ Galera cluster of DB

3 5 10 20
Size of the cluster

20

30

40

50

60

70

Ti
m

e
(s

)

Ansible
Aeolus
Aeolus (est.)
Concerto
Concerto (est.)

Artifacts Grid’5000
Up to 40% gain compared to Ansible

[21/50]

https://gitlab.inria.fr/VeRDi-project/madeus-journal
https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
https://gitlab.inria.fr/VeRDi-project/concerto-evaluation

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Why efficiency?

Minimal OpenStack deployment
∗ 11 services

concerto

Artifacts Grid’5000
Up to 70% gain compared to Ansible
During release periods OpenStack can
be deployed hundreds of times a day

Reconf. multi-site OpenStack
∗ OpenStack Summit 2018
∗ Galera cluster of DB

3 5 10 20
Size of the cluster

20

30

40

50

60

70

Ti
m

e
(s

)

Ansible
Aeolus
Aeolus (est.)
Concerto
Concerto (est.)

Artifacts Grid’5000
Up to 40% gain compared to Ansible

[21/50]

https://gitlab.inria.fr/VeRDi-project/madeus-journal
https://www.openstack.org/videos/summits/vancouver-2018/highly-resilient-multi-region-keystone-deployments
https://gitlab.inria.fr/VeRDi-project/concerto-evaluation

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Parallelism in reconfiguration

Reconfigurations are DAGs (Directed Acyclic Graphs) of (system) actions

However,
∗ Life cycle abstraction is required for developers, DevOps, and (P)
∗ Flexible enough abstractions to not lose opportunities for parallelism

[22/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Parallelism in reconfiguration

Reconfigurations are DAGs (Directed Acyclic Graphs) of (system) actions

However,
∗ Life cycle abstraction is required for developers, DevOps, and (P)
∗ Flexible enough abstractions to not lose opportunities for parallelism

[22/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Concerto - Control components Programmable life cycle with fine-grained dependencies

Server

uninstalled
install

suspend

database_ip

database

running

installed

configured

paused

service

y Written by the component developers

Internal net: Models the life cycle of a component
∗ places = milestones
∗ transitions = concrete actions to perform

Interfaces
∗ ports (CBSE)

∗ use ports = requirements
∗ provide ports = provisions
∗ during execution: active/inactive

∗ behaviors (subset of transitions)
∗ actions on the life cycle

[23/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Concerto - Reconfiguration language Interact with the components’ life cycles

y Used by DevOps, or a declarative tool

Create assemblies and make them evolve at runtime (CBSE)
∗ add/delete a component instance
∗ connect/disconnect two component instances

Interact with the lifecycle of components
∗ push a behavior to the behavior queue on a component instance
∗ wait for a given component instance or wait for all components

[24/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Concerto - Reconfiguration language Interact with the components’ life cycles

y Used by DevOps, or a declarative tool

Create assemblies and make them evolve at runtime (CBSE)
∗ add/delete a component instance
∗ connect/disconnect two component instances

Interact with the lifecycle of components
∗ push a behavior to the behavior queue on a component instance
∗ wait for a given component instance or wait for all components

[24/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Deployment example

add(server: Server)
add(db: Database)
con(server.database_ip,db.ip)
con(server.database,db.service)
pushB(server,install)
pushB(db,deploy)
wait(server)

server: Server

uninstalled install
suspend

database_ip

database

running

installed

configured

paused

behaviors:

service

[25/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Deployment example

add(server: Server)
add(db: Database)
con(server.database_ip,db.ip)
con(server.database,db.service)
pushB(server,install)
pushB(db,deploy)
wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

[25/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Deployment example

add(server: Server)
add(db: Database)
con(server.database_ip,db.ip)
con(server.database,db.service)
pushB(server,install)
pushB(db,deploy)
wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

[25/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Deployment example

add(server: Server)
add(db: Database)
con(server.database_ip,db.ip)
con(server.database,db.service)
pushB(server,install)
pushB(db,deploy)
wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

[25/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Deployment example

add(server: Server)
add(db: Database)
con(server.database_ip,db.ip)
con(server.database,db.service)
pushB(server,install)
pushB(db,deploy)
wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

[25/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Deployment example

add(server: Server)
add(db: Database)
con(server.database_ip,db.ip)
con(server.database,db.service)
pushB(server,install)
pushB(db,deploy)
wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

[25/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Deployment example

add(server: Server)
add(db: Database)
con(server.database_ip,db.ip)
con(server.database,db.service)
pushB(server,install)
pushB(db,deploy)
wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

[25/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Maintenance example

pushB(db,maintain)
pushB(db,deploy)
pushB(server,suspend)
pushB(server,install)
wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

[26/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Maintenance example

pushB(db,maintain)
pushB(db,deploy)
pushB(server,suspend)
pushB(server,install)
wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

[26/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Maintenance example

pushB(db,maintain)
pushB(db,deploy)
pushB(server,suspend)
pushB(server,install)
wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

[26/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Leveraging Concerto in Ansible

The CoAnsible project (INRIA transfer action)

[27/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» How to make Concerto declarative? Principle

∗ inputs: current state of the system (M) + reconfiguration goals (A)
∗ set of behaviors to execute on designated components
∗ constraints on the final state of ports

∗ output: a Concerto reconfiguration program
∗ pushB requests
∗ wait commands

∗ About creations/deletions/(dis)connections
∗ usual to handle topological changes before and after behavioral requests
and synchronizations (e.g., deployment)

Problem formulation
Find a valid (optimal) schedule of pushB and wait instructions

[28/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Maintenance example

Goal
behaviors:
- component: db
behavior: maintain

components:
- forall: running

pushB(db, maintain)
pushB(db, deploy)
pushB(server, suspend)
pushB(server, install)
wait(server)

server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

[29/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Maintenance example

Goal
behaviors:
- component: db
behavior: maintain

components:
- forall: running

pushB(db, maintain)
pushB(db, deploy)
pushB(server, suspend)
wait(db)
pushB(server, install)
wait(server) server: Server

uninstalled

service

install
suspend

database_ip

database

running

installed

configured

paused

running

allocated

undeployed

ip

db: Database

deploy
maintain

behaviors:behaviors:

service

[29/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Leveraging Concerto in Terraform?

Offering programmable life cycles instead of fixed CRUD in Terraform

∗ New plugin framework for programmable life cycles
∗ The planner of Terraform should be replaced with our planner
∗ The execution of Terraform (apply) should be able to use the Concerto
library

More difficult than CoAnsible?

[30/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Leveraging Concerto in Terraform?

Offering programmable life cycles instead of fixed CRUD in Terraform

∗ New plugin framework for programmable life cycles
∗ The planner of Terraform should be replaced with our planner
∗ The execution of Terraform (apply) should be able to use the Concerto
library

More difficult than CoAnsible?

[30/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Leveraging Concerto in Terraform?

Offering programmable life cycles instead of fixed CRUD in Terraform

∗ New plugin framework for programmable life cycles
∗ The planner of Terraform should be replaced with our planner
∗ The execution of Terraform (apply) should be able to use the Concerto
library

More difficult than CoAnsible?

[30/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

Decentralization
∗ Why decentralization?
∗ From Concerto to Ballet

[31/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Fault-tolerance of IaC tools

CP1

CP2

Node1

Node2

WN1

WN2

Controllers/apiserver

.tfstate

[32/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Fault-tolerance of IaC tools

CP1

CP2

Node1

Node2

WN1

WN2

Controllers/apiserver

.tfstate

[32/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Fault-tolerance of IaC tools
CP1

CP2

Node1

Node2

WN1

WN2

Controllers/apiserver

.tfstate

[32/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Fault-tolerance of IaC tools
CP1

CP2

Node1

Node2

WN1

WN2

Controllers/apiserver

.tfstate

idempotence is required f(f(x)) = f(x)
[32/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Resilience of IaC tools

Only a matter of replication?

1. At the Edge or in constrained CPS, disconnection is the norm
∗ any distant central node is regularly unreachable (but still alive)

2. Facing extreme climatic events, the edge of the network could be highly
impacted, resulting in potentially long network partitioning

3. In Cross-DevOps organizations [2], a central state and management is
unwanted (security, privacy, size)

I think the answer is “no”

[33/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Resilience of IaC tools

Only a matter of replication?
1. At the Edge or in constrained CPS, disconnection is the norm

∗ any distant central node is regularly unreachable (but still alive)

2. Facing extreme climatic events, the edge of the network could be highly
impacted, resulting in potentially long network partitioning

3. In Cross-DevOps organizations [2], a central state and management is
unwanted (security, privacy, size)

I think the answer is “no”

[33/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Resilience of IaC tools

Only a matter of replication?
1. At the Edge or in constrained CPS, disconnection is the norm

∗ any distant central node is regularly unreachable (but still alive)
2. Facing extreme climatic events, the edge of the network could be highly
impacted, resulting in potentially long network partitioning

3. In Cross-DevOps organizations [2], a central state and management is
unwanted (security, privacy, size)

I think the answer is “no”

[33/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Resilience of IaC tools

Only a matter of replication?
1. At the Edge or in constrained CPS, disconnection is the norm

∗ any distant central node is regularly unreachable (but still alive)
2. Facing extreme climatic events, the edge of the network could be highly
impacted, resulting in potentially long network partitioning

3. In Cross-DevOps organizations [2], a central state and management is
unwanted (security, privacy, size)

I think the answer is “no”

[33/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Decentralized MAPE-K

M A P E

K

Cloud providers, machines, etc.

[34/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Decentralized MAPE-K

A P

K

Worker 1 Worker 1

M E M E

[34/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» From Concerto to Ballet

M A P E

K

M A P E

K

M A P E

K

Full decentralized MAPE-K: ANR SeMaFoR (WP leader, led by Thomas Ledoux)

Ballet = Decentralized P & E (declarative)

[35/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Concerto-D Decentralized Concerto

Concerto-D vs Concerto
∗ local add/del
∗ local con/dcon

∗ communications: synchronized dcon
∗ local pushB

∗ identified pushB
∗ communications: statuses of ports

∗ wait for local or distant components
∗ communications: end of behaviors

Local progress is possible + less to achieve when the node is back

[36/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Decentralized planner

Artifacts on Grid’5000

∗ Local constraint programming model
∗ Propagation with gossip-like algorithm
∗ Received messages enrich local models

∗ additional behaviors
∗ wait instructions

∗ Final consensus: end of the propagation
∗ Execution is started with Concerto-D

Deployment and update of multi-site OpenStack [1, 2, 5, 10] sites

∗ 40% (deployment) and 24% (update) gain compared to Mjuz
∗ Planning time is less than 2% of the execution time
∗ 10 sites: ∼200 constraints and ∼100 instructions inferred

[37/50]

https://zenodo.org/records/10472116

Infrastructure-as-Code Efficiency Decentralization Safety Opening

Safety
∗ Why safety?
∗ Verification
∗ Formally verified Infrastructure-as-Code

[38/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Why safety?

Services and infrastructures configurations are critical (day-to-day
organization, health, energy, network, etc.). Configuration is difficult.

Formal methods: mathematically rigorous techniques for specifying, verifying,
and synthesizing software systems

[39/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Why safety?

Services and infrastructures configurations are critical (day-to-day
organization, health, energy, network, etc.). Configuration is difficult.

Formal methods: mathematically rigorous techniques for specifying, verifying,
and synthesizing software systems

[39/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Verification of a deployment Restricted to initial deployments

y
Reconf. dev.

Concerto deployment Properties

TimePN compiler TCTL compiler

Model Checker Translator

writes

Qualitative properties
∗ deployability (inevitability)
∗ sequentiality (observer
subnet)

∗ forbidden (observer subnet)
+ quantitative properties

Scalablity issues
∗ Unfeasible for (full) Concerto programs?
∗ Same issue with FOL and SMT

→ synthesizing correct programs (declarativity)

[40/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Verification of a deployment Restricted to initial deployments

y
Reconf. dev.

Concerto deployment Properties

TimePN compiler TCTL compiler

Model Checker Translator

writes

Qualitative properties
∗ deployability (inevitability)
∗ sequentiality (observer
subnet)

∗ forbidden (observer subnet)
+ quantitative properties

Scalablity issues
∗ Unfeasible for (full) Concerto programs?
∗ Same issue with FOL and SMT

→ synthesizing correct programs (declarativity)

[40/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Mechanized semantics of Concerto and Concerto-D

Formal specification of the language (instead of a program)
∗ Ambiguities (problems) can be discovered and resolved in the language
∗ Mathematical reference to guide development
∗ Basis to reason and verify more general properties (any program)

Operational semantics of Concerto and Concerto-D
∗ Pen-and-paper semantics of Concerto
∗ Mechanized semantics of Concerto/Concerto-D

∗ Maude rewriting system
∗ Going to ITP

[41/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» ANR For-CoaLa

[42/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» ANR For-CoaLa

[42/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» ANR For-CoaLa

[42/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» ANR For-CoaLa

[42/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» ANR For-CoaLa

Then verify general theorems on Ansible and CoAnsible!2

2https://for-coala.github.io/about/

[42/50]

https://for-coala.github.io/about/

Infrastructure-as-Code Efficiency Decentralization Safety Opening

Opening

[43/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» ICTs are critical infrastructures

ICTs (digital infrastructures) are critical infrastructures
∗ Other critical infrastructures now rely on ICTs: energy, health,
telecommunications, etc.

∗ ICTs are more and more prominent in our daily life: banks, industries, etc.

Vulnerabilities and crises
Like all critical infrastructures, ICTs face vulnerabilities and crises that have
to be studied, mitigated, and avoided

Which crises?

[44/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» ICTs are critical infrastructures

ICTs (digital infrastructures) are critical infrastructures
∗ Other critical infrastructures now rely on ICTs: energy, health,
telecommunications, etc.

∗ ICTs are more and more prominent in our daily life: banks, industries, etc.

Vulnerabilities and crises
Like all critical infrastructures, ICTs face vulnerabilities and crises that have
to be studied, mitigated, and avoided

Which crises?

[44/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» ICTs are critical infrastructures

ICTs (digital infrastructures) are critical infrastructures
∗ Other critical infrastructures now rely on ICTs: energy, health,
telecommunications, etc.

∗ ICTs are more and more prominent in our daily life: banks, industries, etc.

Vulnerabilities and crises
Like all critical infrastructures, ICTs face vulnerabilities and crises that have
to be studied, mitigated, and avoided

Which crises?

[44/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Which crises?

∗ Climate change
∗ humidity, fired, heat/cold waves,
flooding, etc.

∗ Depletion of natural resources
∗ energy sources, water, metals

∗ (Geo)political instability
∗ access to natural resources,
hardware, software

[45/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Fluctuating resources

What these crises have in common
Fluctuation of resources

Which resources?
∗ energy resources
∗ network-specific resources

∗ connectivity, frequencies
∗ hardware resources

∗ CPUs, GPUs, RAM, disk, antennas
etc.

∗ software resources
∗ services, operating systems etc.

[46/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» IaC in the face of fluctuating resources

∗ IaC for crises
∗ unavailability of part of infrastructures
∗ priorities of infrastructure resources
∗ stochastic model of resources
∗ high heterogeneity of resources
∗ etc.

∗ IaC resilience to crises
∗ decentralized IaC
∗ local-first IaC

∗ Safety aspects of resiliency
∗ formal properties of resiliency?

∗ absorption/mitigation/recovery

[47/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Persons involved in the presented contributions and projects

[48/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» References
[1] J.O. Kephart and D.M. Chess.

The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[2] Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi.
Automating serverless deployments for devops organizations.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, New York, NY, USA, 2021. Association for Computing Machinery.

[3] Rosemary Wang.
Infrastructure as Code, Patterns and Practices: With Examples in Python and Terraform.
Simon and Schuster, 2022.

Mentioned contributions
Jolan Philippe, Antoine Omond, Hélène Coullon, Charles Prud’homme, Issam Rais. Fast Choreography of Cross-DevOps Reconfiguration
with Ballet: A Multi-Site OpenStack Case Study. In IEEE SANER 2024, Finland
Farid Arfi, Hélène Coullon, Frédéric Loulergue, Jolan Philippe, Simon Robillard. A Maude Formalization of the Distributed
Reconfiguration Language Concerto-D. In ICE@DisCoTeC 2024, Groningen, The Netherlands
Simon Robillard, Hélène Coullon. SMT-Based Planning Synthesis for Distributed System Reconfigurations. In FASE 2022, Munich,
Germany
Maverick Chardet, Hélène Coullon, Simon Robillard. Toward Safe and Efficient Reconfiguration with Concerto. SCP, 2021
Maverick Chardet, Hélène Coullon, Christian Perez. Predictable Efficiency for Reconfiguration of Service-Oriented Systems with
Concerto. In CCGrid 2020, Melbourne, Australia
Hélène Coullon, Didier Lime, Claude Jard. Integrated Model-checking for the Design of Safe and Efficient Distributed Software
Commissioning. In iFM 2019, Bergen, Norway

[49/50]

Infrastructure-as-Code Efficiency Decentralization Safety Opening

» Thank you for your attention!

Infrastructure-as-Code
Efficiency
Decentralization
Safety
Opening

[50/50]

	Infrastructure-as-Code
	Efficiency
	Decentralization
	Safety
	Opening

