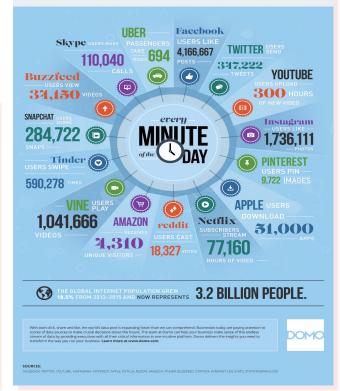

BD NOSQL FIL Al


2025-2026 Hélène Coullon

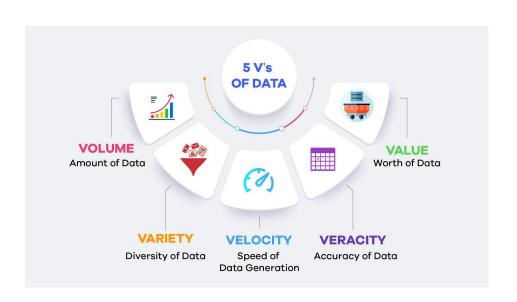
TAILLE DES DONNÉES

Volume of data created and replicated worldwide (source: IDC)

LES 3 V DU BIGDATA

Volume

 La masse de données générées est de plus en plus grande


Vélocité

 La fréquence à laquelle sont produites les données est de plus en plus grande

Variété

 une grande variété de données collectées

LES 5 V DU BIGDATA

- Volume
- Vélocité
- Variété
- Véracité
 - Lié à la qualité de l'information, à son intégrité, à la fiabilité de la source
- Valeur
 - Les données brutes ont souvent peu d'intérêt, il faut réussir à créer de la valeur à partir des données

LES 7 V DU BIGDATA

7 V'S OF BIG DATA

- Volume
- Vélocité
- Variété
- Véracité
- Valeur
- Visualisation
 - Rendre l'information exploitable par le plus grand nombre
- Variabilité
 - Nature changeante de la donnée dont le format ou la valeur peut varier avec le temps

CARACTÉRISTIQUES DES DONNÉES DU BIGDATA

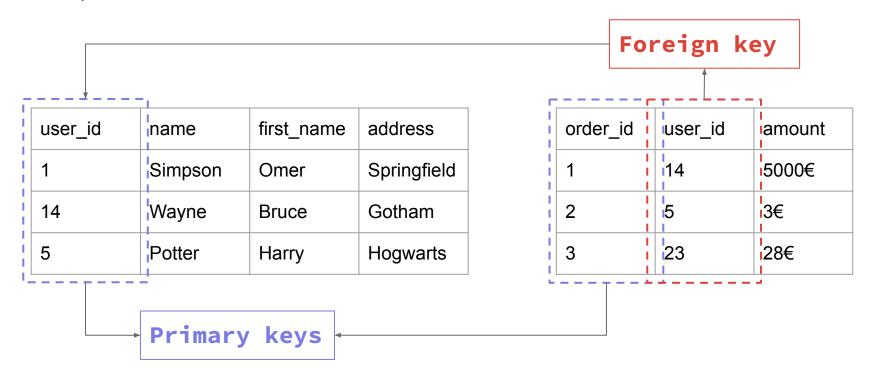
7 V'S OF BIG DATA Volume Velocity Variety Variety Variability Variability Variability Variability Variety Variety Variety

- volume

- il faut pouvoir **partitionner** les données
- il faut éviter les mécanismes qui ralentissent les requêtes
- il faut pouvoir faire des calculs parallèles

- variété

- les données peuvent être structurées semie- ou non-structurées
- la nature des données est très variée

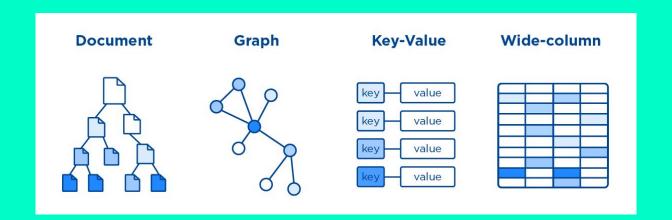

- variabilité

- les **schémas sont un frein** si les données évoluent dans le temps

- vélocité

- on ne peut pas tout stocker, il faut traiter à la volée

RÉSUMÉ BD RELATIONNELLES


Données structurées / Données qui doivent valider le schéma

NOT ONLY SQL (NOSQL)

Utilisent des modèles de données dont la structure est différente de celle du modèle relationnel en table, lignes, et colonnes

- Première apparition du terme en 1998
 - Carl Strozz bases légères et open source
- Popularisé par les GAFAM
 - o 2000 Neo4J
 - 2004 couchDB
 - o 2008 Cassandra
- Adaptées au BigData pour différentes raisons…

4 TYPES PRINCIPAUX

ORIENTÉES COLONNES

 Chaque colonne est traitée séparément, et les valeurs sont stockées de façon contigüe

Hautes performances pour les requêtes d'agrégation comme

SUM, COUNT, AVG et MIN

|||| ClickHouse

order_id	user_id	amount	
1	14	5000€	
2	5	3€	
3	23	28€	
2Billions	i	6859€	

ORIENTÉES DOCUMENTS

- Ensemble de collections contenant des documents
- Un document est typiquement un objet JSON associé à une clé unique
- CRUD sur des documents JSON

```
{"id": "iuhd768", "type": "mobile", "name": "iPhone", "version": 15, ...}

{"id": "leo8", "type": "camera", "name": "Sony aR7", "optics": "mirrorless", ...}

{"id": "po65h", "type": "DVD", "name": "Harry Potter and the goblet of fire", "year": "2005", ...}
```

Object storage est similaire mais les objets peuvent être non-structurés

ORIENTÉES GRAPHES

- L'entité est stockée sous forme de noeud, et les relations comme arêtes
- Facilite la visualisation des relations entre les noeuds
- On l'utilise principalement pour les réseaux sociaux, la logistique, etc.

H. Potter, Hogwarts, brown hair, glasses, ...

D. Malfoy, Hogwarts, blond, son of a death eater, ...

Dumbledore, Hogwarts, old, elder wand, ...

ORIENTÉES CLÉS-VALEURS

- Les données sont stockées sous forme de paires clé / valeur (~table de hachage)
- Permet la prise en charge de larges volumes de données
- Les données sont entreposées dans un tableau de "hash" au sein duquel chaque clé est unique
- Stocker facilement des données sans schéma
- On récupère la valeur entière, pas de requêtes complexes

"dummy"	{"test": "ok", "nothing": True}
786	100111001011
"oih78zz"	42

AUTRES TYPES

SÉRIES TEMPORELLES

- Bases faites pour les événements ou mesures enregistrés dans le temps et associés à un timestamp
- Exemples : monitoring, données de capteurs IoT, enregistrement de clics, transactions financières etc.

timestamp	city (tag key)	country (tag key)	field	field value
2022-01-01T12:00:00Z	London	UK	temperature	12.1
2022-02-01T12:00:00Z	London	UK	temperature	12.5
2022-04-01T12:00:00Z	London	UK	temperature	5.4

ORIENTÉES RECHERCHE

- Requêtes pour faire de la recherche d'information dans des objets/documents JSON (orienté Read, pas Update)
- Données semi-structurées
- Optimisé pour la recherche d'information

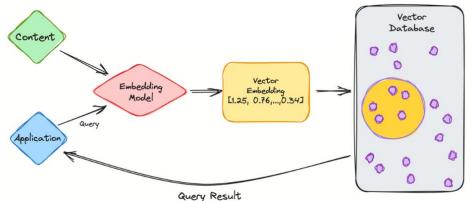

```
{"id": "iuhd768", "type": "mobile", "name": "iPhone", "version": 15, ...}

{"id": "dkhb789", "type": "mobile", "name": "Sony aR7", "optics": "mirrorless", ...}

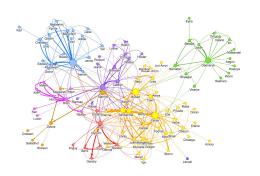
{"id": "po65h", "type": "DVD", "name": ...}
```

type	ids
"mobile"	["iuhd768","dkhb789"]

inverted index


VECTORIELLES

- Recherche de similarités dans des données non-structurées
- Calcul d'un vecteur représentant la donnée pour comparer des données de nature différentes par des distances
- Indexation des données pour accélérer les requêtes
- Retrieval Augmented Generation (RAG): LLM utilise des bases vectorielles pour dynamiquement enrichir sa génération



VISUALISATION DE LA DONNÉE

- Prometheus, Grafana pour les time-series
- Elastic Kibana
- Neo4j Browser, Neo4J Bloom, Neovis.js
- ...

Mais il faudra découvrir par vous même, peut être dans votre tutoriel ou votre projet ?

