
Docker

Hélène Coullon

IMT Atlantique



Table of contents

1. Introduction

2. Docker

3. Create an image with a Dockerfile

4. To go further

5. Deploying a software stack with Docker Compose

1



Introduction



Monoliths vs micro-services

Applications designed as big monoliths

• slow release cycles
• updated infrequently
• lack of flexibility

Micro-services architectures
• smaller, independently running components
• decoupled from each other
• short and independent release cycles

• development
• deployment
• update
• scale

2



Monoliths vs micro-services

3



Problems of micro-services architectures

With bigger numbers of micro-services and increasingly complex data centers to deploy
them

• difficult to correctly configure and deploy the overall system
• difficult to manage the lifecycle of microservices
• difficult to keep the overall system running

Need for automation and orchestration

• automatic configuration and deployment (solved with containers and Docker)
• automatic scheduling of micro-services on servers
• automatic supervision and fault-tolerance

4



A bit about Linux kernel

The kernel is the core of the operating system (DEVOS course)

• it is the portion of the OS that is always loaded in memory
• it controls all hardware resources (e.g., I/O, memory, cryptography, CPU) via drivers
• it arbitrates conflicts and concurrency between processes
• it optimizes the utilization of resources (e.g., cache, memory, CPU, file systems,
network)

The kernel is one of the first programs loaded on startup

5



Coarse-grain comparison between VMs and containers

6



Containers

A container is a light virtualization technique

Container technologies
• Application containers: Docker, podman, rkt, contarinerd
• OS container: LXC Linux
• and others like Singularity for safe HPC containers

7

https://podman.io/
https://github.com/rkt/rkt
https://containerd.io/
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html


Docker



Overview of Docker

The different pieces involved in the process

• CLI (command line interface)
• Docker runtime
• images and registry
• containers

Docker runtime
• Start and stop containers
• Manage images
• Manage networks
• Manage volumes
• etc.

8



Overview of Docker

9



Structure of Docker images

A Docker image is built by assembling different layers

Storage optimization
• layers are shared by different
images to optimize storage

• to do that each layer is identified
by a hash function according to its
content

10



Writing in a container?

A Docker image is immutable!
At runtime, a virtual layer is created on top
of the image
• it is possible to write in this layer
• this layer is not shared with other
containers

• the layer is destroyed with the container

Volumes
If data has to be persistently stored and
shared between containers, a volume has
to be used

11



Volumes

Two types of volumes

Host volumes
> docker run -v src-dir:dest-dir image_id
> docker volume ls

Named volumes
> docker volume create nom_volume
> docker run -v nom_volume:dest-dir image_id
> docker volume ls

The VOLUME [/app/logs] instruction in a Dockerfile only creates the mounting point
in the container. It works without it, but it is a good practice to identify easily the need for
a volume.

12



Ports

Similarly, a port is not statically exposed, port exposition is dynamically created when
creating the container

Host volumes
> docker run -p src-port:dest-port image_id

The EXPOSE port instruction in a Dockerfile does nothing. But it is a good practice to
identify easily the need for a port exposition.

13



Docker CLI

Nothing better than a tutorial to discover the CLI!

14

https://ue-devops-fila2.gitlab-pages.imt-atlantique.fr/docker/02_tuto_cli.html


Create an image with a Dockerfile



Dockerfile principles

A Dockerfile contains a set of commands to build a Docker image

• avoid building images manually
• offers a way for Docker to build layers and avoid useless commands
• a Dockerfile is close to a bash (or a set of Ansible tasks) with instructions to apply

15



Dockerfile through an example

The full documentation is at
https://docs.docker.com/engine/reference/builder/

• FROM to indicate the base image used
to build our image

• RUN to execute a command on top of
the base image

• ENV to declare some environment
variables

• ENTRYPOINT the command to execute
when starting the container

16

https://docs.docker.com/engine/reference/builder/


Another example

• FROM with an image version
• WORKDIR to indicate the working
directory when starting the container

• ADD to add some files from the local
machine to the container image

• CMD the command to execute when
starting the container

Reference documentation

What are the differences between ADD and COPY? What are the differences between
ENTRYPOINT and CMD?

17

https://docs.docker.com/engine/reference/builder/


Build an image with a Dockerfile

docker build [OPTIONS] PATH
> docker build . -t "monapp:latest"

• docker build is the command to build a docker image
• . is the path to find the Dockerfile
• -t is an option to give a name to the image
• by default the Dockerfile is PATH/Dockerfile, you can give another name and use
the -f option

18



To go further



Think about the layers

In the oldest versions of Docker, any line in the Dockerfile created a layer

• too many intermediate layers can be costly costly
• not enough layers can increase the building time
• not enough layers can make impossible storage optimizations
• nowadays only RUN, COPY and ADD create new layers

Good practice 1
Think about your layers when you use RUN, COPY and ADD instructions in your
Dockerfile

19



Reduce image size

Good practice 2
Only install the required dependencies in your Dockerfile

• if using apt to install packages use --no-install-recommends
• if possible delete intermediate files not required when applying RUN

20



Multi-stage build

Good practice 3 - do multi stage build
• reduces the size of images by removing compilation dependencies in the final image
• the final image contains only the dependencies required to run the service
• a base image well adapted for executable files only is scratch or alpine

21



Security

Anyone can push a Docker image on Docker Hub!

Good practice 4 - security
• always prefer official Docker images
• verify that the Docker image is regularly updated
• be sure that the image contains what you think (what are the different layers?)

• > docker history image_name
• tools like dive

• make sure to update the images you are using!

22

https://github.com/wagoodman/dive


Additional good practices

• Indicate the ports to expose in Dockerfiles
• EXPOSE 80
• EXPOSE 53/udp

• Indicate and mount volumes
• VOLUME /myapp/data

• Adding information with labels
• LABEL maintainer="helene.coullon@imt-atlantique.fr"

• Add environment variables
• ENV ADMIN_USER="mark"
• docker run -e ADMIN_USER="john"

23



Deploying a software stack with
Docker Compose



Automating the deployement of containerized applications

• easily deploys a containerized software stack
• define your deployment with a single YAML file (containers, volumes, networks, etc.)
• deployment files easy to share, version control, etc.

24



Structure of compose.yaml
Full specification
• services

• name of the service
• Docker image or build path to
the Dockerfile

• ports exposed by the service
• networks used by the service
• volumes used by the service
• environment variables used by
the service with a value

• depends_on another service

• volumes
• networks

It is very important to understand that Docker compose creates a DNS so that
containers can call each other without knowing their IP addresses!

25

https://docs.docker.com/compose/compose-file/


CLI

Full CLI documentation

A few important commands

• build to build and rebuild services
• up to create and start services, networks, etc.
• stop to stop containers, networks, etc.
• down to stop and remove containers, networks, etc.

26

https://docs.docker.com/compose/reference/


Try to Compose

It is time to try Docker Compose!

You can also explore samples at this link

27

https://docs.docker.com/compose/gettingstarted/
https://github.com/docker/awesome-compose

	Introduction
	Docker
	Create an image with a Dockerfile
	To go further
	Deploying a software stack with Docker Compose

