Docker

Hélene Coullon

IMT Atlantique

Table of contents

1. Introduction

2. Docker

3. Create an image with a Dockerfile
4. To go further

5. Deploying a software stack with Docker Compose

Introduction

Monoliths vs micro-services

Applications designed as big monoliths

- slow release cycles
- updated infrequently
- lack of flexibility

smaller, independently running components
decoupled from each other

short and independent release cycles

development
deployment
update

scale

Monoliths vs micro-services

Monolithic app

K

Server |

\

@

s‘mgle process

\

—

microservices-based app

(Server |

BRYS

~

i~

Server 2
< — ,\\\
progess | process |
N
\\i
process 2 process 2

.

Problems of micro-services architectures

With bigger numbers of micro-services and increasingly complex data centers to deploy
them

- difficult to correctly configure and deploy the overall system

- difficult to manage the lifecycle of microservices

- difficult to keep the overall system running

Need for automation and orchestration

- automatic configuration and deployment (solved with containers and Docker)
- automatic scheduling of micro-services on servers

- automatic supervision and fault-tolerance

A bit about Linux kernel

The kernel is the core of the operating system (DEVOS course)

- itis the portion of the OS that is always loaded in memory

- it controls all hardware resources (e.g., 1/0, memory, cryptography, CPU) via drivers

- it arbitrates conflicts and concurrency between processes

- it optimizes the utilization of resources (e.g., cache, memory, CPU, file systems,
network)

The kernel is one of the first programs loaded on startup

Coarse-grain comparison between VMs and containers

) ssisivnssmiil}

hypervisor

host Os

bare meta machine

app D

opp B
| ‘\ |
app A ‘ ‘ app C ‘
bins/libs ‘ ‘ bins/libs |
W7 77 “ 1% 7
guest OS | quest OS \

container 1 } [contarer2 || contarers || contarer 4 \1‘
| 7 | |
I I
app/fbs “ app B P ‘ D |
bins/lbs bins/libs bins/libs ‘ bins/libs
\ \
ZZ 7 7 — | s
minimal quest OS ‘ minimal guest OS “ minimal guest OS \ ‘ minimal quest OS)\

p ks || -

container engne |

% %)

host Os

bare metal machine

VMs with hypervisor Typel

Containers

Containers

A container is a light virtualization technique

Container technologies
- Application containers: Docker, podman, rkt, contarinerd
- OS container: LXC Linux

- and others like Singularity for safe HPC containers

&> docker O rkt
fs = Bl Enntainerm

https://podman.io/
https://github.com/rkt/rkt
https://containerd.io/
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html

Docker

Overview of Docker

The different pieces involved in the process

- CLI (command line interface)
- Docker runtime
- images and registry

- containers

Docker runtime
- Start and stop containers
- Manage images
- Manage networks
- Manage volumes
- etc.

Overview of Docker

Docker CLI Docker host Q
Docker Desk+op Kegig{-ry
/ ;{ runtime -

docker pull 7
l) }/ / - \ Alpine

- Containers Images

docker build \ —— "
O - appl)* NaGinx

| | \) [— _ -
 docker run | 4)V\

N~

Structure of Docker images

A Docker image is built by assembling different layers

r Docker image \

layer 3 V7 Fies ‘ Storage optimization
: ; - layers are shared by different
layer 2| copy conkig | images to optimize storage

- to do that each layer is identified

install . . .
layer | 6':12 Z by a hash function according to its
content
base layer ’ Alpine

_/

Writing in a container?

/ Docker image \

A Docker image is immutable!
At runtime, a virtual layer is created on top

wri+ing Iayer'

of the image
- it is possible to write in this layer R
- this layer is not shared with other layer 3| copy Fies }
containers -
- the layer is destroyed with the container layer 2 “ copy corﬂ:iﬂ
Volumes hm«;;aT

Ia\/er I \‘

If data has to be persistently stored and | _package |

shared between containers, a volume has
to be used \\ase layer‘ Alplne j

1

Two types of volumes

Host volumes
> docker run -v src-dir:dest-dir image_id

> docker volume 1s

Named volumes

> docker volume create nom_volume

> docker run -v nom_volume:dest-dir image_id

> docker volume 1s

The VOLUME [/app/logs] instruction in a Dockerfile only creates the mounting point

in the container. It works without it, but it is a good practice to identify easily the need for
a volume.

Similarly, a port is not statically exposed, port exposition is dynamically created when
creating the container

Host volumes

> docker run -p src-port:dest-port image_id

The EXPOSE port instruction in a Dockerfile does nothing. But it is a good practice to
identify easily the need for a port exposition.

Docker CLI

Nothing better than a tutorial to discover the CLI!

14

https://ue-devops-fila2.gitlab-pages.imt-atlantique.fr/docker/02_tuto_cli.html

Create an image with a Dockerfile

Dockerfile principles

A Dockerfile contains a set of commands to build a Docker image

- avoid building images manually
- offers a way for Docker to build layers and avoid useless commands
- a Dockerfile is close to a bash (or a set of Ansible tasks) with instructions to apply

Dockerfile through an example

The full documentation is at

https://docs.docker.com/engine/reference/builder/

- FROM to indicate the base image used
to build our image

- RUN to execute a command on top of
the base image

- ENV to declare some environment
variables

- ENTRYPOINT the command to execute
when starting the container

U s WK =

FROM alpine

RUN apt update

RUN apt install -y htop
ENV TERM=xterm
ENTRYPOINT /bin/htop

https://docs.docker.com/engine/reference/builder/

Another example

- FROM with an image version

- WORKDIR to indicate the working
directory when starting the container

FROM python:3.8-alpine

WORKDIR /app

ADD . /app/

RUN pip install -r requirements.txt
CMD ["python","movie.py"]

- ADD to add some files from the local
machine to the container image

U w N =

- CMD the command to execute when
starting the container

Reference documentation

What are the differences between ADD and COPY? What are the differences between
ENTRYPOINT and CMD?

https://docs.docker.com/engine/reference/builder/

Build an image with a Dockerfile

docker build [OPTIONS] PATH

> docker build . -t "monapp:latest”

- docker buildisthe command to build a docker image
- . is the path to find the Dockerfile
- -tis an option to give a name to the image

- by default the Dockerfile is PATH/Dockerfile, you can give another name and use
the -f option

To go further

Think about the layers

In the oldest versions of Docker, any line in the Dockerfile created a layer

- too many intermediate layers can be costly costly

- not enough layers can increase the building time

- not enough layers can make impossible storage optimizations
- nowadays only RUN, COPY and ADD create new layers

Good practice 1

Think about your layers when you use RUN, COPY and ADD instructions in your
Dockerfile

19

Reduce image size

Good practice 2
Only install the required dependencies in your Dockerfile

- if using apt to install packages use --no-install-recommends

- if possible delete intermediate files not required when applying RUN

20

Multi-stage build

Good practice 3 - do multi stage build

- reduces the size of images by removing compilation dependencies in the final image

- the final image contains only the dependencies required to run the service

- a base image well adapted for executable files only is scratch or alpine

FROM golang as builder|

RUN apt update && apt install -y git protobuf-compiler golang-goprotobuf-dev && \
git clone https://gitlab.imt-atlantique.fr/url && \
cd productcatalogservice && \
go mod download && \
mkdir genproto && \
protoc --go_out=plugins=grpc:genproto -I . productcatalogservice.proto && \
CGO_ENABLED=0 go build

FROM scratch

COPY --from=builder /go/productcatalogservice/productcatalogservice /
COPY --from=builder /go/productcatalogservice/products.json /
ENTRYPOINT ["/productcatalogservice"]

21

always prefer official Docker images
verify that the Docker image is regularly updated

be sure that the image contains what you think (what are the different layers?)

> docker history image_name
tools like dive

make sure to update the images you are using!

22

https://github.com/wagoodman/dive

Additional good practices

- Indicate the ports to expose in Dockerfiles

- EXPOSE 80
- EXPOSE 53/udp

- Indicate and mount volumes

- VOLUME /myapp/data
- Adding information with labels

- LABEL maintainer="helene.coullon@imt-atlantique.fr"
- Add environment variables

- ENV ADMIN_USER="mark"
- docker run -e ADMIN_USER="john"

23

Deploying a software stack with
Docker Compose

Automating the deployement of containerized applications

.,) docker

J@’) Compose

- easily deploys a containerized software stack
- define your deployment with a single YAML file (containers, volumes, networks, etc.)

- deployment files easy to share, version control, etc.

24

Structure of compose.yaml

Full specification

- services % e
- name of the service
- Docker image or build path to it
the Dockerfile 5 fom s i
- ports exposed by the service R e s
- networks used by the service 1
- volumes used by the service §Z e
- environment variables used by ;;
the service with a value o
- depends_on another service §§ A
volumes w e
36 external: trugl
- networks

It is very important to understand that Docker compose creates a DNS so that
containers can call each other without knowing their IP addresses!

25

https://docs.docker.com/compose/compose-file/

Full CLI documentation

A few important commands

- build to build and rebuild services
- up to create and start services, networks, etc.
- stop to stop containers, networks, etc.

- down to stop and remove containers, networks, etc.

26

https://docs.docker.com/compose/reference/

Try to Compose

It is time to try Docker Compose!

You can also explore samples at this link

27

https://docs.docker.com/compose/gettingstarted/
https://github.com/docker/awesome-compose

	Introduction
	Docker
	Create an image with a Dockerfile
	To go further
	Deploying a software stack with Docker Compose

