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Introduction



Définition ?



Les ordres de grandeur pour le stockage
bit (b) 0 ou 1 1 mm

octet (o) / byte (B) 8 bits 1 caractère ASCII 1 m
kilooctet (ko / KB) 1000 octets, 10³ octets Une page de texte (2 Ko) 1 km

mégaoctet (Mo/MB) 1000 ko, 10⁶ octets Tout Shakespeare (5 Mo). Un 
morceau de pop (4 Mo).

10⁶ m - Lille-Marseille

gigaoctet (Go/GB) 1000 Mo, 10⁹ octets Un film (1-2 Go) 10⁹ m - Terre-Lune (0,38)

téraoctet (To/TB) 1000 Go, 10¹² octets Tous les livres de la American’s 
Library of Congress (15 To)

10¹² m - Terre-Saturne (1,3)

pétaoctet (Po/PB) 1000 To, 10¹⁵ octets Google traite 1 Po en 1 heure 10¹⁵ m - année-lumière (9,5)

exaoctet (Eo/PB) 1000 Po, 10¹⁸ octets 10 milliards d'exemplaires de 
The Economist

10¹⁸ m - plus proche trou noir

zettaoctet (Zo/ZB) 1000 Eo, 10²¹ octets Information présente sur 
Internet en 2024: 174 Zo

10²¹ m

yottaoctet (Yo/YB) 1000 Zo, 10²⁴ octets Currently too big to imagine 10²⁶ m - la taille de l’univers



Taille des données



Les 3 V du BigData

● Volume
○ La masse de données 

générées est de plus en 
plus grande

● Vélocité
○ La fréquence à laquelle 

sont produites les 
données est de plus en 
plus grande

● Variété
○ une grande variété de 

données collectées



Les 5 V du BigData

● Volume
● Vélocité
● Variété
● Véracité

○ Lié à la qualité de 
l'information, à son 
intégrité, à la fiabilité 
de la source

● Valeur
○ Les données brutes ont 

souvent peu d’intérêt, il 
faut réussir à créer de la 
valeur à partir des données



Les 7 V du BigData

● Volume
● Vélocité
● Variété
● Véracité
● Valeur
● Visualisation

○ Rendre l'information 
exploitable par le plus grand 
nombre

● Variabilité
○ Nature changeante de la 

donnée dont le format ou la 
valeur peut varier avec le 
temps



Les côtés obscurs

● Consommation de ressources et production de gaz à effet de serre
● Appropriation de données personnelles
● Banditisme
● Espionnage
● Manipulation de l’opinion
● Contrôle social
● etc.



Déroulement de l’UE
● Evaluation

○ quiz
○ oral tuto NoSQL
○ projet

● Je vous redis pour les 
compétences !

Partie 1 : Bases de données 
pour le BigData

Partie 2 : Calculs en 
BigData

Partie 3 : Projet



Contenu de l’UE
Partie 1 (Hélène Coullon)

● [2h] 03/02 matin
○ Introduction, SQL, NoSQL
○ TP MySQL
○ Affectation tutoriels NoSQL

● [3h45] 03/02 aprem 
○ TP Mongo
○ Travail en groupe tutos NoSQL

● [2h] 10/02 matin
○ Cours partitionnement
○ TP Mongo Shardings 
○ Travail en groupe tutos NoSQL

● [3h45] 10/02 aprem
○ TP Garage sur Grid’5000

■ Baptiste Jonglez - Inria

Partie 2 (Guillaume Rosinosky)

● [3h45] 11/02 matin
○ Spark Core
○ Spark SQL

● [3h45] 17/02 aprem
○ Spark streaming
○ Kafka

● Projets par 4/5
○ [3h45] 24/02 aprem

■ Quiz NoSQL (20 min)
○ [3h45] 03/03 aprem
○ [3h45] 10/03 aprem
○ [3h45] 17/03 aprem

■ Quiz Spark (20 min)
● Oraux tutoriels NoSQL 24/03
● Oraux projets + TA le 27/03



Rappels SQL



Les BD relationnelles et SQL
Les BD relationnelles :

● Le modèle relationnel apparaît en 1970. Il est dû à Edgar F. 
Codd.

● Il s’appuie sur le concept mathématique d’algèbre relationnelle

SQL : IBM développe un prototype de SGBD relationnel et son langage 
SQUARE (Specifying Queries in A Relational Environment) qui devient 
SEQUEL (Structured English Query Language) puis SQL suite à conflit 
juridique sur le nom, par la suite interprété Structured Query 
Language.

Cours et exemples ici

https://moodle.imt-atlantique.fr/mod/resource/view.php?id=77512
https://moodle.imt-atlantique.fr/mod/resource/view.php?id=77514&forceview=1


Résumé BD relationnelles

user_id name first_name address

1 Simpson Omer Springfield

14 Wayne Bruce Gotham

5 Potter Harry Hogwarts

order_id user_id amount

1 14 5000€

2 5 3€

3 23 28€

Primary keys

Foreign key

Données structurées / Données qui doivent valider le schéma



SGBD relationnel
Système de gestion de bases de données

● Définition de la structure ou du schéma de données
● Accès aux données (ou requêtes)
● Administration (utilisateurs, sécurité, intégrité, 

concurrence, reprise sur faute, performances etc.)

Quelques exemples de SGBD relationnels :

● SQL server (microsoft - propriétaire)
● Oracle database (Oracle corporation - propriétaire)
● MySQL (Oracle corporation - ouvert)
● PostgreSQL (projet collaboratif)



Bases de données 
NoSQL



Caractéristiques des données du BigData
- volume

- il faut pouvoir partitionner les données
- il faut éviter les mécanismes qui ralentissent les requêtes
- il faut pouvoir faire des calculs parallèles

- Partie 2
- variété

- les données peuvent être structurées semie- ou non-structurées
- la nature des données est très variée

- variabilité
- les schémas sont un frein si les données évoluent dans le temps

- vélocité
- on ne peut pas tout stocker, il faut traiter à la volée

- Partie 2



Not Only SQL (NoSQL)
Utilisent des modèles de données dont la structure est 
différente de celle du modèle relationnel en table, lignes, 
et colonnes

● Première apparition du terme en 1998
○ Carl Strozz - bases légères et open source

● Popularisé par les GAFAM
○ 2000 Neo4J
○ 2004 couchDB
○ 2008 Cassandra

● Adaptées au BigData pour différentes raisons…



4 types principaux



Orientées Colonnes
● Chaque colonne est traitée séparément, et les valeurs 

sont stockées de façon contigüe
● Hautes performances pour les requêtes d’agrégation comme 

SUM, COUNT, AVG et MIN
order_id user_id amount

1 14 5000€

2 5 3€

3 23 28€

…

2Billions 6859€

SUM



Orientées documents
● Ensemble de collections contenant des documents
● Un document est typiquement un objet JSON associé à une clé unique
● CRUD sur des documents JSON

{“id”: “iuhd768”, “type”: “mobile”, “name”: “iPhone”, “version”: 15, …}

{“id”: “Ieo8”, “type”: “camera”, “name”: “Sony aR7”, “optics”: “mirrorless”, …}

{“id”: “po65h”, “type”: “DVD”, “name”: “Harry Potter and the goblet of fire”, “year”: “2005”, …}

Object storage est similaire mais 
les objets peuvent être non-structurés



Orientées Graphes
● L’entité est stockée sous forme de noeud, et les 

relations comme arêtes
● Facilite la visualisation des relations entre les noeuds
● On l’utilise principalement pour les réseaux sociaux, la 

logistique, etc.

D. Malfoy, Hogwarts, blond, son of a 
death eater, …

A. Dumbledore, Hogwarts, 
old, elder wand, …

H. Potter, Hogwarts, brown hair, 
glasses, …

st
ud
en
t 
of



Orientées clés-valeurs
● Les données sont stockées sous forme de paires clé / 

valeur (~table de hachage)
● Permet la prise en charge de larges volumes de données
● Les données sont entreposées dans un tableau de “hash” au 

sein duquel chaque clé est unique
● Stocker facilement des données sans schéma
● On récupère la valeur entière, pas de requêtes complexes

“dummy” {“test”: “ok”, “nothing”: True}

786 100111001011

“oih78zz” 42



Autres types



Séries temporelles
● Faites pour les événements ou mesures enregistrés dans le 

temps et associés à un timestamp
● Exemples : monitoring, données de capteurs IoT, 

enregistrement de clics, transactions financières etc.

timestamp city (tag key) country (tag key) field field value

2022-01-01T12:00:00Z London UK temperature 12.1

2022-02-01T12:00:00Z London UK temperature 12.5

2022-04-01T12:00:00Z London UK temperature 5.4



Orientées recherche
● Requêtes pour faire de la recherche d’information dans 

des objets/documents JSON (orienté Read, pas Update)
● Données semi-structurées
● Optimisé pour la recherche d’information

{“id”: “iuhd768”, “type”: “mobile”, “name”: “iPhone”, “version”: 15, …}

{“id”: “dkhb789”, “type”: “mobile”, “name”: “Sony aR7”, “optics”: “mirrorless”, …}

{“id”: “po65h”, “type”: “DVD”, “name”: …}

type ids

“mobile” [“iuhd768”,“dkhb789”]

inverted index



Vectorielles
● Recherche de similarités dans des données non-structurées
● Calcul d’un vecteur représentant la donnée pour comparer 

des données de nature différentes par des distances
● Indexation des données pour accélérer les requêtes
● Retrieval Augmented Generation (RAG) : LLM utilise des 

bases vectorielles pour dynamiquement enrichir sa 
génération



Visualisation de la donnée
● Prometheus, Grafana pour les time-series
● Elastic Kibana
● Neo4j Browser, Neo4J Bloom, Neovis.js
● …

Mais il faudra découvrir par vous même, peut être dans votre 
tutoriel ou votre projet ?



MongoDB
Rappels JSON



Orientées documents
● Ensemble de collections (~=tables) contenant des documents (~=lignes)
● Un document est typiquement un objet JSON associé à une clé unique

○ la clé est ajoutée par Mongo à l’insertion
● CRUD sur des documents JSON

{“id”: “iuhd768”, “type”: “mobile”, “name”: “iPhone”, “version”: 15, …}

{“id”: “Ieo8”, “type”: “camera”, “name”: “Sony aR7”, “optics”: “mirrorless”, …}

{“id”: “po65h”, “type”: “DVD”, “name”: “Harry Potter and the goblet of fire”, “year”: “2005”, …}



Des arbres !
● Valeurs atomiques

○ Des chaînes de caractères
○ Des nombres
○ 3 constantes : true, false et null.

● Paires clé/valeur
○ La clé est un string
○ La valeur est une valeur atomique
○ Le nom et la valeur d’une paire sont séparés par un deux-points

● 2 types de valeurs composites
○ Une collection de paires clé/valeur ~= objet, dictionnaire, 

enregistrement, liste de paires 
■ Une collection est délimitée par des accolades 
■ Ses paires sont séparées par des virgules

○ Une séquence de valeurs ~= un tableau, un vecteur, une liste 
■ Un tableau est délimité par des crochets
■ Ses éléments sont séparées par des virgules

Exemples

https://github.com/fanzeyi/pokemon.json


TP
● Revoir SQL avec MySQL



Noté
Conception d’un tutoriel NoSQL
6 sujets :

- REDIS (key-value store)
- ClickHouse (columnar)
- InfluxDB (time series)
- Elasticsearch (search)
- Milvus (vector)
- Neo4J (graphes)

Inscriptions ici

Rendus :

- tutoriel conteneurisé
- repo GitHub et README du tuto
- utilisation d’un dataset dispo en ligne de votre choix
- visualisation des données (si vous avez le temps)

https://partage.imt.fr/index.php/s/Zmi4H6CeaGZmFkk


TP
● TP Mongo



Contenu de l’UE
Partie 1 (Hélène Coullon)

● [2h] 03/02 matin
○ Introduction, SQL, NoSQL
○ TP MySQL
○ Affectation tutoriels NoSQL

● [3h45] 03/02 aprem 
○ TP Mongo
○ Travail en groupe tutos NoSQL

● [2h] 10/02 matin
○ Cours partitionnement
○ TP Mongo Shardings 
○ Travail en groupe tutos NoSQL

● [3h45] 10/02 aprem
○ TP Garage sur Grid’5000

■ Baptiste Jonglez - Inria

Partie 2 (Guillaume Rosinosky)

● [3h45] 11/02 matin
○ Spark Core
○ Spark SQL

● [3h45] 17/02 aprem
○ Spark streaming
○ Kafka

● Projets par 4/5
○ [3h45] 24/02 aprem

■ Quiz NoSQL (20 min)
○ [3h45] 03/03 aprem
○ [3h45] 10/03 aprem
○ [3h45] 17/03 aprem

■ Quiz Spark (20 min)
● Oraux tutoriels NoSQL 24/03
● Oraux projets + TA le 27/03



Scalabilité et
distribution



Scalabilité verticale - gérer plus de données sur 1 serveur

document1
document2
document3

document1
document2
document3

…
documentX

+ de CPU
+ de RAM
+ de disque



Plus de serveurs pour

● stocker les données -> comment partitionner ?
● répondre aux requêtes

Scalabilité horizontale - Plus de serveurs

document1
document2
document3

document1
document2
document7

document4
document5
document8

document3
document6
document9

Serveur1

Serveur2

Serveur3

Serveur1
/!\ différent de la réplication



Partitionnement vertical
● Répartir les colonnes (les tables) d’une base de données 

sur les différents serveurs
● S’applique plutôt aux BD relationnelles normalisées
● Problème : les jointures demandent des échanges de 

messages entre les serveurs

user_id name first_name address

1 Simpson Omer Springfield

14 Wayne Bruce Gotham

5 Potter Harry Hogwarts

order_id user_id amount

1 14 5000€

2 5 3€

3 23 28€

Serveur1 Serveur2



Partitionnement horizontal - Sharding
● Répartir les lignes des tables sur les différents serveurs
● Bien sélectionner la shard key (pour bien répartir la charge)

○ range-based sharding : [A-I]->S1,[J-R]->S2,[S-Z]->S3
○ hash-based sharding : hash1->S1,hash2->S2,hash3->S3
○ directory-based sharding : red->S1,blue->S2,green->S3
○ geographical-based sharding …

● MySQL propose aussi du sharding maintenant !

user_id name first_name address

1 Simpson Omer Springfield

14 Wayne Bruce Gotham

Shard1

user_id name first_name address

5 Potter Harry Hogwarts

Shard2



dénormalisation
Un modèle de données dénormalisé embarque toutes les données 
associées dans un seul document au lieu de répartir l’information 
dans différentes collections et documents.

(Concerne principalement les BD NoSQL qui gère des documents)

Objectifs : 

● éviter au maximum les jointures qui ralentissent les requêtes 
surtout quand on a de très gros volumes de données

● faciliter le partitionnement horizontal (sharding)

Une réplication de l’information est parfois nécessaire entre 
différents documents. Attention à la cohérence des données !



En pratique avec Mongo
Router
(mongos)

Config
Server

Shard1
(mongod)

Shard2
(mongod)

cached config

● Router (mongos)
○ The mongo server acts as a query 

router, providing an interface 
between client applications and 
the sharded cluster

● Config server
○ Config server stores metadata 

and configuration settings for 
the cluster

● Shards (mongod)
○ each shard contains a subset of 

the sharded data



Réplication et BD distribuées

Réplication pour la tolérance aux pannes (ne pas perdre de 
données)

- données disponibles à plusieurs endroits
- gestion de la consistance des données ?
- tolérance aux partitionnements réseau ?

On ne peut pas tout avoir à la fois !

S1 S2 S3

Client
Master



Théorème CAP
3 propriétés souhaitables sur les bases de données distribuées :

● La cohérence (consistency) signifie que la donnée est la même 
sur tous les noeuds (version la plus récente)

● La disponibilité (availability) signifie que toute requête 
obtient une réponse, même si un ou plusieurs nœuds sont en 
panne

● La tolérance au partitionnement réseau signifie que le cluster 
doit continuer à fonctionner malgré un nombre quelconque de 
pannes de communication entre les nœuds du système

Seulement 2 de ces 3 propriétés peuvent être vérifiées à la fois



Intuition de la preuve
Par l’absurde : imaginons que les 3 propriétés sont validées

S1
v0

S2
v0

S3
v0

C

write x

ok new v1

S1
v1

read x

v0

Tolérance au partitionnement
Le système continue de fonctionner

Disponible
Le système répond

Incohérence
Contradiction

Cohérence 
guarantieS2

v1



Problème CAP
Disponibilité (A)

Consistency (C) Tolérance au 
partitionnement (P)

Oracle
MySQL

PostgreSQL

DynamoDB
Cassandra
MongoDB

Garage

Pas de réponses si inconsistance

Ne
 f
on
ct
io
nn
e 
pl
us
 s
i 
pa
rt
it
io
nn
em
en
t

Ne peut pas garantir la consistance

Modèles de consistance faible peuvent rendre CAP un peu plus “possible”



En pratique avec Mongo (bis)
En pratique il faut coupler le sharding avec la réplication !

● scalabilité
● tolérance aux pannes

Router
(mongos)

Config
Server

Shard1
(mongod)

Shard2
(mongod)

cached config

Config
ServerConfig
Server

Shard1
(mongod)Shard1

(mongod)

Shard2
(mongod)
Shard2
(mongod)

Router
(mongos)



TP
● TP Sharded Mongo
● TP BD distribuée Garage

○ Baptiste Jonglez



Calculs parallèles
Map-Reduce



Motivation
Début des années 2000, Google automatise l’exploration et 
l’indexation du web

● Plus de 1 milliard de pages de 20 Ko = 20 To
● Performance d’un disque dur : ~ 20 Mo/s, 10 Go
● Il faut :

○ pour enregistrer le web : 2000 disques durs
○ pour traiter le web :

■ 1 mois pour “lire” le web avec une machine
■ 8 minutes avec 2000 machines

Il faut paralléliser les calculs ! -> Map-Reduce



Calculs parallèles
Le calcul parallèle ça date de bien longtemps ! ~Années 1960

On parallélise pour

● aller plus vite
● traiter de plus gros problèmes
● traiter plus de données

Différents types de parallélisme :

● Parallélisme de tâches
○ exécution de plusieurs tâches en même temps
○ ordre partiel de tâches
○ partage des données

● Parallélisme de données
○ division des données
○ application du même calcul sur les différentes données



Map-Reduce ?
● Parallélisme de données
● Calculs “simples” sur beaucoup de données

○ indexes inversés
○ liens entre les pages web
○ page rank etc.

● Aller plus vite et traiter plus de données
● Ne cherche pas à optimiser au maximum (pas HPC)
● Mais cherche à abstraire la complexité

○ un modèle de programmation simple
○ parallélisme automatique / distribution des données
○ les communications et la coordination des calculs
○ la tolérance aux pannes (fault tolerance)
○ l’équilibrage de charges (load balancing)



Google MapReduce (2000)
Map et Reduce sont deux fonctions classiques d’ordre supérieur de la 
programmation fonctionnelle

● Une bibliothèque (C++)
○ fournit les primitives de programmation sous forme d’appels à la bibliothèque
○ gère les “détails” précédents une fois pour toute

Les étapes :

1. Lecture des données
2. Map : extrait de chacune des données un résultat intermédiaire
3. Shuffle (GroupByKey, Sort) : réarrange et trie les résultats 

intermédiaires
4. Reduce : filtre, agrège, résume, transforme… les résultats intermédiaires
5. Ecriture du résultat

Seules les étapes Map et Reduce dépendent du problème.



Map
Soit une liste l = list(e1, …, en)

● map(f, l) applique f à chacun des éléments de la liste
● map(f, l) = list(f(e1), …, f(en))
● Le principe s’étend aux collections.



Reduce
Soit une liste l = list(e1, …, en)

● reduce(op, l) où op est un opérateur binaire associatif 
● effectue le calcul e1 op e2… op en-1 op en

Dans les cas limite ( n <= 1) 

● la réduction retourne  un résultat optionnel (e1 pour n = 1)
● un 3ème paramètre définit une valeur à associer à la liste 

vide



Hadoop
Projet Apache depuis 2006 (basé sur des développements antérieurs 
notamment de Doug Cutting, et inspirés par GFS et Google MapReduce)

● Écrit en Java
● Fournit le modèle de programmation MapReduce au dessus de

○ HDFS (Hadoop Distributed File System)
○ YARN (Yet Another Resource Negotiator) qui gère l’allocation 

des ressources et l’ordonnancement des tâches (depuis 2012)

En voie de désuétude… mais le modèle de programmation reste 
d’actualité ! 



Vision de haut niveau



Machines parallèles
HPC, Cloud, clusters



Cloud vs HPC
● La Data c’est plutôt le monde du Cloud

○ orienté “services”
○ disponibilité
○ élasticité
○ la donnée c’est du pouvoir

● Le calcul parallèle c’est plutôt le monde du HPC
○ calculer le plus vite possible (Calcul Haute Performance)
○ résoudre des problèmes nouveaux grâce à la puissance de calcul 

(décodage du génome humain, IA, forages, astronomie, météo et climat, 
etc.)

○ plutôt orienté “science”
○ le calcul c’est du pouvoir

Le Cloud/Data/IA comme le HPC/IA sont désormais des éléments 
géo-politiques. Et les deux mondes sont de plus en plus proches

Le BigData est un peu au milieu mais un peu plus proche du Cloud



● Top500 … La course à la puissance de calcul
○ Et la Chine ?

● Green500 … “Green” mmoui

FLOPS (FLoating point Operations Per Second) : la performance 
s’exprime en opérations (additions ou multiplications) à virgule 
flottante par seconde

Parlons machines HPC

https://top500.org/lists/top500/2024/11/
https://top500.org/lists/green500/2024/11/


Cluster de machines
Définition

● A grand nombre de serveurs très proches les uns des autres
● Interconnectés par un réseau haute performance 

Remarques

● Une machine HPC est un très gros cluster de machines
● Les centres de calculs HPC sont constitués de plusieurs clusters
● Les clouds sont aussi un ensemble de clusters divisés en régions
● Hadoop ou Spark sont typiquement déployés sur des clusters
● Il est bon de noter qu’on peut aussi faire des clusters de 

machines virtuelles



Loi de Moore et architectures
● Loi empirique de 1965 (revue en 1975)
● Doublement du nombre de transistors sur une puce CPU tous 

les deux ans à coût constant



Loi de Moore et architectures
● Mauvaise interprétation - fréquence des processeurs

○ stagne depuis 2004 à 5GHz
○ record de 500 GHz par IBM 

■ transistor équipé d'une puce à base de silicium-germanium
■ refroidi à −269 °C à l'hélium liquide

● Les architectures se sont complexifiées
○ la loi reste vrai
○ multi-core
○ accélérateurs graphiques



Prix du matériel

● Les ressources naturelles et leur 
extraction ont rendu la collecte massive 
de données et leur traitement possible !

● Et dans le futur ?



architecture d’une machine et d’un cluster
● Coeur : ressource de calcul
● Processeur / CPU : composé de 1 

ou plusieurs coeurs
● Mémoire : organisée de façon 

hiérarchique
● Noeud : plusieurs processeurs 

qui partagent une même mémoire 
(NUMA)

● Réseau rapide : relie les 
noeuds entre eux

● Système de fichier : 
entrées/sorties sur disques

Coeur Coeur

Cache Cache

Cache

Mémoire RAM

Disque

GPU

Noeud

Noeud

Réseau rapide



MapReduce, Hadoop et Spark



Spark



Problème d’écritures et de lectures sur disque
Avec Google MapReduce / Hadoop

écritures sur disque

Aussi ne pas faire nécessairement un reduce après le map ? plusieurs map, 
des filtres, et autres opérations



In-memory approach
● Ne plus faire d’écritures intermédiaires
● Pouvoir enchaîner des transformations sur des données en mémoire et 

déjà partitionnées
● Ecrire seulement lorsqu’une action est demandée (write, reduce etc.)



Spark

● Unified analytics engine for large-scale data processing
● High-level APIs in Java, Scala, Python and R
● Rich set of higher-level tools including 

○ Spark SQL for SQL and structured data processing
○ MLlib for machine learning
○ GraphX for graph processing
○ Streaming for incremental computation and stream processing

Spark core (RDDs)

Spark DataFrame API

Spark SQL Spark 
streaming

Spark
MLlib

Spark
GraphX

Third-party
libraries

Data source
connectors



Spark data sources



Spark core - RDD
● The main abstraction Spark provides is a Resilient 

Distributed Dataset (RDD)
● An RDD is a Collection of elements partitioned across 

the nodes of the Spark cluster
● RDDs can be operated on in parallel
● 2 types of computations on RDDs

○ Transformations create a new dataset from an existing one
○ Actions return a value to the driver program after running a 

computation on the dataset



Spark core - Transformations et actions
Création initiale d’un RDD : Fonction parallelize

Transformations

● Map
● Filter
● GroupBy
● etc.

Actions

● Collect
● Reduce
● Save
● etc.

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.SparkContext.parallelize.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations
https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions


Spark core - Transformations et actions



Spark core - Example

Data
Source

Data
Source

parallelize

parallelize

Map GroupBy

Map Filter

Join

Take



Lazy evaluation
● Nothing is computed on RDDs until an action is called!
● Each transformed RDD may be recomputed each time you run an action on it
● Can also persist an RDD in memory using the persist (or cache) method

Data
Source

Data
Source

parallelize

parallelize

Map GroupBy

Map Filter

Join

Take



Architecture de Spark

Driver program
(main)

SparkContext Cluster Manager

Worker node

Worker node

executor

executor

Task Task

Task Task

● Standalone
● Mesos
● YARN
● Kubernetes

asks for resources

sends program

sends program

sends tasks

sends tasks


