Ut BIGDATA
FISEAS - TAF LOGIN

INTRODUCTION d-nd

Bretagne-Pays de la Loire
Ecole Mines-Télécom

DEFINITION !

Accueil > Grand dictionnaire terminologique

meégadonnées

— anglais : big data
Domaines : 8 8

informatique
intelligence artificielle

Auteur :
@ Office québécois de la langue francaise

Derniére mise a jour : 2020

Définition

Ensemble d'une trés grande quantité de données, structurées ou non, se présentant sous différents
formats et en provenance de sources multiples, qui sont collectées, stockées, traitées et analysées dans
de courts délais, et qui sont impossibles a gérer avec des outils classiques de gestion de bases de
données ou de gestion de l'information.

LES ORDRES DE GRANDEUR POUR LE STOCKAGE

bit (b) Oou1 1 mm
octet (o) / byte (B) 8 bits 1 caractére ASCII 1m
1 km

kilooctet (ko / KB)

1000 octets, 102 octets

Une page de texte (2 Ko)

mégaoctet (Mo/MB)

1000 ko, 10° octets

Tout Shakespeare (5 Mo). Un
morceau de pop (4 Mo).

10° m - Lille-Marseille

gigaoctet (Go/GB)

1000 Mo, 10° octets

Un film (1-2 Go)

10° m - Terre-Lune (0,38)

téraoctet (To/TB)

1000 Go, 102 octets

Tous les livres de la American’s
Library of Congress (15 To)

10"* m - Terre-Saturne (1,3)

pétaoctet (Po/PB)

1000 To, 10" octets

Google traite 1 Po en 1 heure

10" m - année-lumiere (9,5)

exaoctet (Eo/PB)

1000 Po, 10" octets

10 milliards d'exemplaires de
The Economist

10" m - plus proche trou noir

zettaoctet (Zo/ZB)

1000 Eo, 102" octets

Information présente sur
Internet en 2024: 174 Zo

10" m

yottaoctet (Yo/YB)

1000 Zo, 10?* octets

Currently too big to imagine

10%* m - la taille de l'univers

/

EES

TATLLE DES DONN

Volume of data created and replicated worldwide (source: inc)

200

180

181

147

120

97

79

64.2

41
33 I

26

o O o o o o o
O < N O 0 O <
™ = -

$91Age139Z Ul WnN|oA e1eQq

e g 28 155 18
= u 0N I I

5
=

o
o~

0

[£5 3V DU BIGDATA

e Volume
o La masse de données
générées est de plus en
plus grande

"-.~‘ & ® &
')‘. ‘ e e Vélociteé
A \ L 0’ o La fréquence a laquelle
L4

..I Yoo sont produites les

données est de plus en
Volume Velocity Variety plus grande

e SR e Variété

o une grande variété de
données collectées

£S5V DU BIGDATA

e Volume
o Vélocité
5V's e Variété
1 OF DATA ’ ° ’
=2\ = e Veracite
(=il Y, /4 w W o Lié a la qualité de
. i S 1'information, a son
4 VALUE . , . , \) . . ’
Amount of Data %@ Worth of Data -Integr-lte’ a -La -F-Iab-l-l'-lte
(23 de la source
e Valeur
| o Les données brutes ont
VARIETY VELOCITY VERACITY souvent peu d’intérét, il
Diversity of Data Speed of Accuracy of Data fau.t réUSS'ir é Créer de 'La

Data Generation

valeur a partir des données

L£S 1V DU BIGDATA

7 V'S OF BIG DATA

Variability

Visualization

Volume
Vélocité
Variété
Véracité
Valeur
Visualisation

O

Rendre 1'information
exploitable par le plus grand
nombre

Variabilité

O

Nature changeante de 1la
donnée dont le format ou la
valeur peut varier avec le
temps

LES COTES 0BSCURS

Consommation de ressources et production de gaz a effet de serre
Appropriation de données personnelles

Banditisme

Espionnage

Manipulation de 1’opinion
Controle social

etc.

DEROULEMENT DE L'UE

e Evaluation

o quiz Partie 1 : Bases de données
o oral tuto NoSQL pour le BigData
o projet
e Je vous redis pour les
compétences ! Partie 2 : Calculs en

BigData

Partie 3 : Projet

CONTENU DE 1"\

Partie 2 (Guillaume Rosinosky)

Partie 1 (Héléne Coullon) e [3h45] 11/02 matin
o Spark Core
e [2h] 03/02 matin o Spark SQL
o Introduction, SQL, NoSQL e [3h45] 17/02 aprem
o TP MySQL) O Spark streaming
o Affectation tutoriels NoSQL o Kafka
e [3h45] 03/02 aprem e Projets par 4/5
O TP Mongo o [3h45] 24/02 aprem
o Travail en groupe tutos NoSQL m Quiz NoSQL (20 min)
e [2h] 10/02 matin o [3h45] 03/63 aprem
o Cours partitionnement o [3h45] 10/03 aprem

O TP Mongo Shardings o [3h45] 17/03 aprem

o Travail en groupe tutos NoSQL = Quiz Spark (26 min)
e [3h45] 10/02 aprem e Oraux tutoriels NoSQL 24/03

o TP Garage sur Grid’5000 e Oraux projets + TA le 27/03
m Baptiste Jonglez - Inria

RAPPELS SQL A

Bretagne-Pays de la Loire
Ecole Mines-Télécom

L£S BD RELATIONNELLES €7 5Q1.

Les BD relationnelles

e Le modele relationnel apparait en 1970. Il est di a Edgar F.

Codd.
e Il s’appuie sur le concept mathématique d’algebre relationnelle

SQL : IBM développe un prototype de SGBD relationnel et son langage
SQUARE (Specifying Queries in A Relational Environment) qui devient

SEQUEL (Structured English Query Language) puis SQL suite a conflit
juridique sur le nom, par la suite interprété Structured Query

Language.

Cours et exemples 1icCi

https://moodle.imt-atlantique.fr/mod/resource/view.php?id=77512
https://moodle.imt-atlantique.fr/mod/resource/view.php?id=77514&forceview=1

RESUME BD RELATIONNELLES

J Foreign key

I_ | r—-—-=-=-==- r

: user_id :name first_ name | address : order_id : :user_id :amount

I | I {1 |

o :Simpson Omer Springfield 1 |14 '5000€

I | | 1[1 1

|14 :Wayne Bruce Gotham |2 |5 13€

I l I 11 1

s Potter Harry Hogwarts |3 |23 28€

. oo oea—ooo-- .
[——ﬂ»Primary keys [

Données structurées / Données qui doivent valider le schéma

SGBD RELATIONNEL

Systeme de gestion de bases de données

e Définition de la structure ou du schéma de données

e Acceés aux données (ou requétes)

e Administration (utilisateurs, sécurité, intégrité,
concurrence, reprise sur faute, performances etc.)

Quelques exemples de SGBD relationnels

SQL server (microsoft - propriétaire)

Oracle database (Oracle corporation - propriétaire)
MySQL (Oracle corporation - ouvert)

PostgreSQL (projet collaboratif)

BASES DE DONNEES 4 4
NOSQL

IMT Atlantique
eeeeeeeeeeeeeeee

7 V'S OF BIG DATA

CARACTERISTIQUES DES DONNEES DU BIGDATA 0;0

- volume
- il faut pouvoir partitionner les données
- 41 faut éviter les mécanismes qui ralentissent les requétes
- il faut pouvoir faire des calculs paralleles
- Partie 2
- variété
- les données peuvent étre structurées semie- ou non-structurées
- la nature des données est treés variée
- variabilité
- les schémas sont un frein si les données évoluent dans le temps
- vélocité
- on ne peut pas tout stocker, il faut traiter a la volée
- Partie 2

NOT ONLY SQL (NoSQL)

Utilisent des modeles de données dont la structure est
différente de celle du modele relationnel en table, lignes,
et colonnes

e Premiere apparition du terme en 1998
o Carl Strozz - bases légeres et open source

e Popularisé par les GAFAM
o 2000 Neo4J
o 2004 couchDB
o 2008 Cassandra

e Adaptées au BigData pour différentes raisons..

|} TYPES PRINCIPAUX

ORTENTEES COLONNES

e Chaque colonne est traitée séparément, et les valeurs
sont stockées de facon contigle
e Hautes performances pour les requétes d’agrégation comme

SUM, COUNT, AVG et MIN -—————— I
order _id user_id I amount |
APACHE l |
I’{””” 1 14 : 5000€ l
"L\ MariaDB 5 5 I 3¢ :

I 1 SUM
Goo e - amazon 3 23 : 28€ !
B@Tame REDSHIFT : :
| |
; 2Billions : 6859€ |

ORTENTEES DOCUMENTS

¢ Ensemble de collections contenant des documents
e Un document est typiquement un objet JSON associé a une clé unique
e CRUD sur des documents JSON

=) CouchDB

relax

. mongoDB

{*id”: “iuhd768”, “type”: “mobile”, “hame”: “iPhone”, “version”: 15, ...}

I, ” 1]

{*id”: “leo8”, “type”: “camera”, “name”: “Sony aR7”, “optics”: “mirrorless”, ...}

{*id”: “po65h”, “type”: “DVD”, “name”; “Harry Potter and the goblet of fire”, “year”: “20057, ...}

Object storage est similaire mais
. N , amazon
les objets peuvent étre non-structurés

S3
MINIO Garage

ORIENTEES GRAPHES @ & ArangoDB

e L’entité est stockée sous forme de noeud, et les

relations comme arétes
e Facilite 1la visualisation des relations entre les noeuds

e On 1’utilise principalement pour les réseaux sociaux, la
logistique, etc.

H. Potter, Hogwarts, brown hair, =
glasses, ... A. Dumbledore, Hogwarts,
old, elder wand, ...

D. Malfoy, Hogwarts, blond, son of a
death eater, ...

ORTENTEES CLES-VALEURS

e Les données sont stockées sous forme de paires clé /
valeur (~table de hachage)

e Permet la prise en charge de larges volumes de données

e Les données sont entreposées dans un tableau de “hash” au
sein duquel chaque clé est unique

e Stocker facilement des données sans schéma

e On récupere la valeur entiere, pas de requétes complexes

é redis “dummy” {“test”: “ok”, “nothing”: True}

Amazon
. DynamoDB 786 100111001011

Q eth “0ih78zz” 42

AUTRES TYPES

SERTES TEMPORELLES @ influxdb) prometneus

e Faites pour les événements ou mesures enregistrés dans le
temps et associés a un timestamp

e Exemples : monitoring, données de capteurs IoT,
enregistrement de clics, transactions financieres etc.

timestamp city (tag key) | country (tag key) field field value
2022-01-01T12:00:00Z | London UK temperature | 12.1
2022-02-01T12:00:00Z | London UK temperature | 12.5
2022-04-01T12:00:00Z | London UK temperature | 5.4

ORTENTEES RECHERCHE

e Requétes pour faire de la recherche d’information dans
des objets/documents JSON (orienté Read, pas Update)

e Données semi-structurées
e Optimisé pour la recherche d’information

s

@ algolia

{“id”: “iuhd768”, “type”: “mobile”, “name”: “iPhone”, “version”: 15, ...}
{“id”: “dkhb789”, “type”: “mobile”, “name”: “Sony aR7”, “optics”: “mirrorless”, ...}

{“id”: “po65h”, “type”: “DVD”, “name”: ...}

type ids

‘mobile” [‘iuhd768”,“dkhb789’]

inverted index

VECTORTELLES

e Recherche de similarités dans des données non-structurées

e Calcul d’un vecteur représentant la donnée pour comparer
des données de nature différentes par des distances

e Indexation des données pour accélérer les requétes

e Retrieval Augmented Generation (RAG) : LLM utilise des
bases vectorielles pour dynamiquement enrichir sa
génération

)

° Q
<® Milvus S °5
S ()

@ chroma e
. _/ 00 0 0
Fa2 0 a

¢+ Pinecone P

VISUALISATION DE LA DONNEE

e Prometheus, Grafana pour les time-series

e Elastic Kibana

e Neo4j Browser, Neo4J Bloom, Neovis.js

([

Mais il faudra découvrir par vous méme, peut étre dans votre
tutoriel ou votre projet ?

MONGODB 4V 4
RAPPELS JSON

IMT Atlantique
eeeeeeeeeeeeeeeeeeeeee

ORTENTEES DOCUMENTS

e Ensemble de collections (~=tables) contenant des documents (~=lignes)
e Un document est typiquement un objet JSON associé a une clé unique

o la clé est ajoutée par Mongo a l’insertion
e CRUD sur des documents JSON

. mongoDB = CouchDB

relax

I, 7 13

{*id”: “iund768”, “type”: “mobile”, “name”: “iPhone”, “version”: 15, ...}

I, ”» (1]

{*id”: “leo8”, “type”: “camera”, “name”: “Sony aR7”, “optics”: “mirrorless”, ...}

{*id”: “po65h”, “type”: “DVD”, “name”: “Harry Potter and the goblet of fire”, “year”: “2005”, ...}

DES ARBRES |

e Valeurs atomiques
o Des chaines de caracteres
o Des nombres
o 3 constantes : true, false et null.

e Paires clé/valeur
o La clé est un string
o La valeur est une valeur atomique
o Le nom et la valeur d’une paire sont séparés par un deux—-points

e 2 types de valeurs composites
o Une collection de paires clé/valeur ~= objet, dictionnaire,
enregistrement, liste de paires

m Une collection est délimitée par des accolades
m Ses paires sont séparées par des virgules

o Une séquence de valeurs ~= un tableau, un vecteur, une liste
m Un tableau est délimité par des crochets
m Ses éléments sont séparées par des virgules

Exemples

https://github.com/fanzeyi/pokemon.json

4 s d

IMT Atlantique
Bretagne-Pays de la Loire
Ecole Mines-Télécom

[P

e Revoir SQL avec MySQL

NoTE A_sd

IMT Atlantique

Bretagne-Pays de la Loire

CONCEPTION D'UN TUTORIEL NoSQI

6 sujets :

- REDIS (key-value store)
- ClickHouse (columnar)

- InfluxDB (time series)
- Elasticsearch (search)
- Milvus (vector)

- Neo4J (graphes)

Rendus :

- tutoriel conteneurisé

- repo GitHub et README du tuto

- utilisation d’un dataset dispo en ligne de votre choix
visualisation des données (si vous avez le temps)

https://partage.imt.fr/index.php/s/Zmi4H6CeaGZmFkk

[P

TP Mongo

4 s d

IMT Atlantique

Bretagne-Pays de la Loire
Ecole Mines-Télécom

CONTENU DE 1"\

Partie 2 (Guillaume Rosinosky)

Partie 1 (Héléne Coullon) e [3h45] 11/02 matin
o Spark Core
e [2h] 03/02 matin o Spark SQL
o Introduction, SQL, NoSQL e [3h45] 17/02 aprem
o TP MySQL) O Spark streaming
o Affectation tutoriels NoSQL o Kafka
e [3h45] 03/02 aprem e Projets par 4/5
O TP Mongo o [3h45] 24/02 aprem
o Travail en groupe tutos NoSQL m Quiz NoSQL (20 min)
e [2h] 10/02 matin o [3h45] 03/63 aprem
o Cours partitionnement o [3h45] 10/03 aprem

O TP Mongo Shardings o [3h45] 17/03 aprem

o Travail en groupe tutos NoSQL = Quiz Spark (26 min)
e [3h45] 10/02 aprem e Oraux tutoriels NoSQL 24/03

o TP Garage sur Grid’5000 e Oraux projets + TA le 27/03
m Baptiste Jonglez - Inria

SCALABILITE 1 4 4
DISTRIBUTION

IMT Atlantique
eeeeeeeeeeeeeeeeeeeeee

SCALABILITE VERTICALE - GERER PLUS DE DONNEES SUR 1 SERVEUR

+ de CPU
+ de RAM
+ de disque

SCALABILITE HORTZONTALE - PLUS DE SERVEURS

Plus de serveurs pour

e stocker les données -> comment partitionner ?
e répondre aux requétes

Serveurl Serveur3
TN
v
documentl documentl document4 document3
document?2 document2 document5 document6
document3 document? document8 document9
v
Serveurl Serveur?2

/'\ différent de la réplication

PARTITIONNEMENT VERTICAL

e Répartir les colonnes (les tables) d’une base de données
sur les différents serveurs

e S’applique plutdét aux BD relationnelles normalisées

e Probleme : les jointures demandent des échanges de
messages entre les serveurs

_________ Serveurl r - Seﬁveurz
Y et A S fah

i user_id Ename first name | address i order _id E iuser_id iamount

i 1 ESimpson Omer Springfield i 1 E i14 E5000€

i 14 EWayne Bruce Gotham i 2 E i5 E3€

i 5 Potter Harry Hogwarts i 3 E :23 Ezge

|

PARTITIONNEMENT HORTZONTAL - SHARDING

e Répartir les lignes des tables sur les différents serveurs

e Bien sélectionner la shard key (pour bien répartir la charge)
[A-I1->S1,[J-R]->S2,[S-Z]->S3

o hash-based sharding : hashl->S1,hash2->S2,hash3->S3

o directory-based sharding : red->S1,blue->S2,green->S3

o geographical-based sharding ..

e MySQL propose aussi du sharding maintenant !

o range-based sharding :

Shardl
user_id name first_ name | address Shard2
1 Simpson | Omer Springfield user_id name first_ name | address
14 Wayne Bruce Gotham S Potter Harry Hogwarts

DENORMALISATION

Un modele de données dénormalisé embarque toutes les données
associées dans un seul document au lieu de répartir 1’information
dans différentes collections et documents.

(Concerne principalement les BD NoSQL qui gere des documents)
Objectifs

e ¢éviter au maximum les jointures qui ralentissent les requétes
surtout quand on a de tres gros volumes de données
e faciliter le partitionnement horizontal (sharding)

Une réplication de 1’information est parfois nécessaire entre
différents documents. Attention a la cohérence des données !

EN PRATIQUE AVEC MONGO

e Router (mongos)

O The mongo server acts as a query

cached config router, providing an interface
e between client applications and
IR the sharded cluster

- e Config server
................. Config o Config server stores metadata
Server and configuration settings for
the cluster
e Shards (mongod)

o each shard contains a subset of
the sharded data

Router
(mongos)

~
~
~

Shard2
(mongod)

Shardl

(mongod)

REPLICATION €7 BD DISTRIBUEES

Réplication pour la tolérance aux pannes (ne pas perdre de
données)

- données disponibles a plusieurs endroits
- gestion de la consistance des données ?
- tolérance aux partitionnements réseau ?

On ne peut pas tout avoir a la fois !

THEOREME CAP

3 propriétés souhaitables sur les bases de données distribuées

e La cohérence (consistency) signifie que la donnée est la méme
sur tous les noeuds (version la plus récente)

e La disponibilité (availability) signifie que toute requéte
obtient une réponse, méme si un ou plusieurs neuds sont en
panne

e La tolérance au partitionnement réseau signifie que le cluster
doit continuer a fonctionner malgré un nombre quelconque de
pannes de communication entre les ncuds du systeme

Seulement 2 de ces 3 propriétés peuvent étre vérifiées a la fois

INTUITION DE LA PREUVE

Par 1’absurde : imaginons que les 3 propriétés sont validées

Cohérence
s1 52 guarantie
\illll!EI'il

TN c Incohérence

Contradiction

Tolérance au partitionnement Disponible
Le systeme continue de fonctionner Le systeme répond

PROBLEME CAP

Disponibilité (A)

Oracle) DynamoDB
. >
MySOL 5 2 Cassandra
PostgreSQOL -

Tolérance au

ConSiStenc C as de réponses si inconsistance
Y©€) roe e v ‘ partitionnement (P)

Garage

Modeles de consistance faible peuvent rendre CAP un peu plus “possible”

EN PRATIQUE AVEC MONGO (B15)

En pratique il faut coupler le sharding avec la réplication !

Router
(mongos)

e scalabilité Router
e tolérance aux pannes (mongos)

4 s d

IMT Atlantique

Bretagne-Pays de la Loire
Ecole Mines-Télécom

[P

e TP Sharded Mongo
e TP BD distribuée Garage
Baptiste Jonglez

CALCULS PARALLELES 4V 4
MAP-REDUCE

IMT Atlantique
eeeeeeeeeeeeeeeeeeeeee

MOTIVATION

Début des années 2000, Google automatise 1’exploration et
1’indexation du web

e Plus de 1 milliard de pages de 20 Ko = 20 To
e Performance d’un disque dur : ~ 20 Mo/s, 10 Go
e Il faut

o pour enregistrer le web : 2000 disques durs

o pour traiter le web :
m 1 mois pour “lire” le web avec une machine
m 8 minutes avec 2000 machines

I1 faut paralléliser les calculs ! -> Map-Reduce

CALCULS PARALLELES

Le calcul parallele ca date de bien longtemps ! ~Années 1960
On parallélise pour

e aller plus vite
e traiter de plus gros problemes
e traiter plus de données

Différents types de parallélisme :

e Parallélisme de taches
o exécution de plusieurs taches en méme temps
o ordre partiel de taches
o partage des données
e Parallélisme de données
o division des données
o application du méme calcul sur les différentes données

MAP-REDUCE |

Parallélisme de données
Calculs “simples” sur beaucoup de données

O
@)
O

indexes inversés
liens entre les pages web
page rank etc.

Aller plus vite et traiter plus de données
Ne cherche pas a optimiser au maximum (pas HPC)
Mais cherche a abstraire la complexité

O

O
O
O
O

un modéle de programmation simple

parallélisme automatique / distribution des données
les communications et la coordination des calculs
la tolérance aux pannes (fault tolerance)
1’équilibrage de charges (load balancing)

GO0GLE MAPREDUCE (2000)

Map et Reduce sont deux fonctions classiques d’ordre supérieur de la
programmation fonctionnelle

e Une bibliotheque (C++)
o fournit les primitives de programmation sous forme d’appels a la bibliotheque
o gere les “détails” précédents une fois pour toute

Les étapes

1. Lecture des données
2. Map : extrait de chacune des données un résultat intermédiaire
3. Shuffle (GroupByKey, Sort) : réarrange et trie les résultats

intermédiaires
4. Reduce : filtre, agrege, résume, transforme.. les résultats intermédiaires
5. Ecriture du résultat

Seules les étapes Map et Reduce dépendent du probleme.

MA?

Soit une liste 1 = list(el, .., en)

e map(f, 1) applique f a chacun des éléments de la liste
¢ map(f, 1) = list(f(el), .., f(en))
e Le principe s’étend aux collections.

REDUCE

Soit une liste 1 = list(el, .., en)

¢ reduce(op, 1) ou op est un opérateur binaire associatif
e effectue le calcul el op e2.. op en-1 op en

Dans les cas limite (n <= 1)

e la réduction retourne un résultat optionnel (el pour n = 1)
e un 3eéme parametre définit une valeur a associer a la liste
vide

1ADOOP

Projet Apache depuis 2006 (basé sur des développements antérieurs
notamment de Doug Cutting, et inspirés par GFS et Google MapReduce)

e FEcrit en Java
e Fournit le modele de programmation MapReduce au dessus de
o HDFS (Hadoop Distributed File System)
o YARN (Yet Another Resource Negotiator) qui gere 1’allocation
des ressources et 1’ordonnancement des taches (depuis 2012)

En voie de désuétude.. mais le modele de programmation reste
d’actualité !

L APACHE

VISION DE HAUT NIVEAU

oS P,

Il —>O\""" <O-lll-O-
1 "/ /
'l —’Oé'""/ Ol

uuuuuuuuuuuuu

MACHINES PARALLELES T Alanigue

Ecole Mines-Télécom

HPC, Cloud, clusters

CLOUD VS HPC

e La Data c’est plutét le monde du Cloud
o orienté “services”
o disponibilité
o élasticité
o 1la donnée c’est du pouvoir
e Le calcul parallele c’est plutdt le monde du HPC
o calculer le plus vite possible (Calcul Haute Performance)
o résoudre des problemes nouveaux grace a la puissance de calcul
(décodage du génome humain, IA, forages, astronomie, météo et climat,

etc.)
o plutdt orienté “science”
o Tle calcul c’est du pouvoir

Le Cloud/Data/IA comme le HPC/IA sont désormais des éléments
géo-politiques. Et les deux mondes sont de plus en plus proches

Le BigData est un peu au milieu mais un peu plus proche du Cloud

PARLONS MACHINES HPC

e Top500 .. La course a la puissance de calcul
o Et la Chine ?

e Green500 .. “Green” mmoui

FLOPS (FLoating point Operations Per Second) : la performance
s’exprime en opérations (additions ou multiplications) a virgule
flottante par seconde

https://top500.org/lists/top500/2024/11/
https://top500.org/lists/green500/2024/11/

CLUSTER DE MACHINES

Définition

A grand nombre de serveurs tres proches les uns des autres
Interconnectés par un réseau haute performance

Remarques

Une machine HPC est un tres gros cluster de machines

Les centres de calculs HPC sont constitués de plusieurs clusters
Les clouds sont aussi un ensemble de clusters divisés en régions
Hadoop ou Spark sont typiquement déployés sur des clusters

I1 est bon de noter qu’on peut aussi faire des clusters de
machines virtuelles

01 DE MOORE ET ARCHITECTURE

e Loi empirique de 1965 (revue en 1975)
e Doublement du nombre de transistors sur une puce CPU tous
les deux ans a colt constant

Moore’s Law: The number of transistors on microchips doubles every two years [SUSWEIE
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data

This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
Transistor count

50,000,000,000
10,000,000,000
10,000,000,000 1 5 REROSCeSE
1,000,000,000 0.1 ® 1,000,000,000
» 100,000,000 0.01 2 500,000,000
£ 10,000,000 0001 £
z 1,000,000 0.0001 g 50000000
© 100,000 0.00001 e
b 10,000 - 0.000001 oo
5 1,000 0.0000001 o
£ 100 0.00000001
2 10 T T T ‘ -~ 0.000000001 R
1970 1980 1990 2000 2010 100000
Yeal’ 50,000
—+—Transistor count -@-Average transistor price 10,000
5,000
PP LD P L L PGP E PP S 00
Data source: Wikipedia (wikipedia.org/wiki/ Transistor_count) Year in which the microchip was first introduced

wiki/Tran:
OurWorldinData.org - Research and data to make progress against the world's largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser

L01 DE MOORE ET ARCHITECTURES

e Mauvaise interprétation - fréquence des processeurs
o stagne depuis 2004 a 5GHz
o record de 500 GHz par IBM
m transistor équipé d'une puce a base de silicium-germanium
m refroidi a -269 °C a 1'hélium liquide
e Les architectures se sont complexifiées
o la loi reste vrai
o multi-core - .-
o accélérateurs graphiques

107 GPU-Computing perf
2X per year 1000X

In 10 years

Trilions of Operations per Second (TOPS)

e
Single-threaded CPU perf

1980 1930 2000 2010 2020 2030

PRI DU MATERIFL

10,000,000,000 1 -
1,000,000,000 - ’_/—‘@ 01 ®
» 100,000,000 0.01 2
£ 10,000,000 0001 £
‘@ 1,000,000 00001 &
s 100,000 — 0.00001
= 10,000 pa——— 0.000001
- 1,000 - 0.0000001
£ 100 0.00000001
3 10 - : - . - 0.000000001
1970 1980 1990 2000 2010

—+—Transistor count

Year
-@-Average transistor price

e Les ressources naturelles et leur

extraction ont rendu la collecte massive

de données et leur traitement possible

e Et dans le futur

?

Historical price of computer
storage

Expressed in US dollars per terabyte (TB), adjusted for inflation.
"Disk" refers to magnetic storage, "flash" to memory used for rapid
data access and rewriting, and "solid state" to solid-state drives
(SSDs).

100 billion $/TB
10 billion $/TB

1 billion $/TB
100 million $/TB
10 million $/TB
1 million $/TB
100,000 $/TB
10,000 $/TB
1,000 $/TB

100 $/TB

— Flash
Solid state
£ Disk

1956 1980 1990 2000 2023
Data source: John C. McCallum (2023) CCBY

ARCHITECTURE D"UNE MACHINE ETD'UN CLUSTER

Noeud e Coeur : ressource de calcul
e Processeur / CPU : composé de 1

GPU ou plusieurs coeurs

e Mémoire : organisée de facon
hiérarchique

e Noeud : plusieurs processeurs
qui partagent une méme mémoire
(NUMA)

e Réseau rapide : relie les
noeuds entre eux

Mémoire RAM

e Systeme de fichier :

Noeud entrées/sorties sur disques

MAPREDUCE, HADOOP ET SPARK

User
Program

Driver Program

/—_;b

SparkContext

» Cluster Manager

(1) fork .-~ (1) fork
o (Mifork - ,
assign assign
_.'map reduce
split 0 ‘/ output
¥ file 0
split 1 . d (4) local write
split 2 L @
split 3
P output
split 4 file 1
Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

/

Worker Node
Executor | Cache
Task Task
Worker Node
v
Executor | Cache
Task Task

IMT Atlantique
Bretagne-Pays de la Loire

Ecole Mines-Télécom

PROBLEME D ECRITURES £ DE LECTURES SUR DISQUE

Avec Google MapReduce / Hadoop

o< = o-ill-0— li—o< = o-Hll-0— o< = Co-ill-0—
I I _,O <IIIIII O_, / I I _,O 4IIIIII O_, / I I _,O <IIIHI O_, /

Il ~o<"""7o»||||||\ Il ~o<:::7o»||||||\ Il ~o<""">o»||||||\

N

eeeeeeee

!
écritures sur disque -

Aussi ne pas faire nécessairement un reduce apres le map ? plusieurs map,
des filtres, et autres opérations

IN-MEMORY APPROACH

e Ne plus faire d’écritures intermédiaires

e Pouvoir enchainer des transformations sur des données en mémoire et
déja partitionnées

e Ecrire seulement lorsqu’une action est demandée (write, reduce etc.)

g ENEER NN W
Source D:D:D:D D:D:D:D
"

RDD
(o P

RDD
Source I:D:D:D:l

SPARK

Spark Spark Spark Third-party
APACHE

Spark DataFrame API OQ’K

™

Spark core (RDDs)

Data source
connectors

e Unified analytics engine for large-scale data processing

e High-level APIs 1in Java, Scala, Python and R

e Rich set of higher-level tools including

Spark SQL for SQL and structured data processing

ML1lib for machine learning

GraphX for graph processing

Streaming for 1dincremental computation and stream processing

o O O O

SPARK DATA SOURCES

&kafka & hocioog K&

T cassandra

vt Q@
-— | .
ostgre p Qr . Object Stores

l ‘ mongoDB
.and many e redis
Data Warehouses

o, @ olasti
@ elastic

more!

SPARK CORE - RDD

e The main abstraction Spark provides 1is a Resilient
Distributed Dataset (RDD)

e An RDD 1is a Collection of elements partitioned across
the nodes of the Spark cluster
RDDs can be operated on 1in parallel

e 2 types of computations on RDDs
o Transformations create a new dataset from an existing one
o Actions return a value to the driver program after running a
computation on the dataset

SPARK CORE - TRANSFORMATIONS ET ACTIONS

Création initiale d’un RDD : Fonction parallelize

Transformations

e Map "Narrow” deps:
o Filter _— ==
e GroupBy -

e etc. Eg 22
Actions e

(LLYTT]
(1]

e Collect

e Reduce

e Save join with
e etc. inputs co-

partitioned

"Wide" (shuffle) deps:

join with inputs not

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.SparkContext.parallelize.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations
https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions

SPARK CORE - TRANSFORMATIONS ET ACTIONS

map(f: T = U)

filter(f : T = Bool)
flatMap(f : T = Seq[U])
sample(fraction : Float)

RDD[T] = RDDI[U]
RDD[T] = RDDIT]
RDD[T] = RDDI[U]
RDD[T] = RDDIT] (Deterministic sampling)

lookup(k : K)
save(path : String)

groupByKey() RDDI[(K, V)] = RDD[(K, Seq[V])]
reduceByKey(f : (V,V) = V) RDDI[(K, V)] = RDDI[(K, V)]
Transformations union() (RDD[T],RDD[T]) = RDDIT]
join() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() (RDD[(K, V)],RDDI[(K, W)]) = RDD[(K, (Seq[V], Seq[W]))]
crossProduct() (RDDI[T],RDD[U]) = RDD[(T, U)]
mapValues(f : V= W) RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDD[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] = RDD[(K, V)]
count() RDD|T] = Long
collect() RDD[T] = Seq[T]
Actions reduce(f : (T,T) = T) RDD[T] =T

RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

SPARK CORE - EXAMPLE

— Map —— GroupBy
parallelize -
Data >
Source -
— —
Take
— Map — Filter
parallelize -
Data >
Source - .
— —

LAZY EVALUATION

e Nothing is computed on RDDs until an action 1is called!
e Each transformed RDD may be recomputed each time you run an action on it
e Can also persist an RDD in memory using the persist (or cache) method

I% GrofpBy

paray{élize
Data

Source

Y

AILn (RERN

Take

para}(elize
Data

Source

ARCHITECTURE DE SPARK

e

Driver program
(main)

sends program

asks for resources

SparkContext

sends program

sends tasks

=

Worker node

executor

Standalone
Mesos N
YARN

Kubernetes

Worker node

executor

sends tasks

