
UE AD FIL A1

UE Services FISE A3 LOGIN

Introduction

2025-2026

Hélène Coullon



Table of Contents

1. Architectures distribuées

2. Autres concepts associés

3. Quelques grands types d’architectures distribuées

4. Et cette UE ?

5. Déroulement de l’UE

1 / 25



Architectures distribuées



Architecture distribuée

User Movie

Booking Times

• Architecture modulaire fait de composants qui

ont des rôles qui leur sont propres

• Les composants sont distribués sur des

machines différentes dans le réseau

• Les composants communiquent les uns avec les

autres par échange de messages sur le réseau

• Les composants peuvent être écrits dans des

langages différents mais doivent utiliser les

même protocoles de communication

2 / 25



Distribution et modularité

• Séparer les fonctionnalités et les rôles n’est pas spécifique au distribué !

• modules

• fonctions

• classes

• paquets

• etc.

• Mais pour faire du distribué il faut séparer clairement les problèmes !

• Ce qui est spécifique au distribué c’est de placer les composants sur des machines

distantes et de les faire communiquer via le réseau.

3 / 25



Architecture monolithique

Une architecture distribuée vient en opposition d’une architecture monolithique

Mais une architecture monolithique peut être modulaire (3-tiers, hexagonale) !

Système / Application

Un seul gros composant
Conçu comme un tout

Avantages

• Conception plus simple

• Pas de communications réseau

Inconvénients

• Redéploiement total si changements

• Peu tolérant aux pannes

• Peu scalable

• Pas de distribution des modules ou

fonctionnalités (pas Cloud-native)
4 / 25



Architecture monolithique = 1 seule machine ?

Monolith 1

Monolith 2

Monolith N

...

machine 1

machine 2

machine N

client

client

client

Même si le système suit une architecture

monolithique

• Il peut être déployé sur plusieurs machines !

• Chaque instance (ou déploiement) fonctionne

comme un tout unique sans communication

avec une autre.

• On peut répartir la charge avec un
load-balancer entre chaque instance.

• scalabilité horizontale

5 / 25



Architecture distribuée

Avantages

• Modulaire

• séparation des préoccupations, flexibilité, maintenabilité

• réutilisation de code facilité

• Flexible et évolutif

• mise à jour par éléments

• déploiement continu

• changements (reconfiguration) dynamique

• Tolérance aux pannes

• Scalabilité

Inconvénients

• Plus difficile à concevoir : API, réseau, sécurité etc.

6 / 25



Les architectures distribuées aujourd’hui

Désormais les architectures distribuées sont inévitables !

Infrastructures distribuées

• Clusters ou grappes de calculs

• Informatique à la demande (Cloud, Fog/Edge computing)

• Systèmes IoT et cyber-physiques

• Internet

Applications distribuées

• Applications web

• Applications mobile

• Applications IoT (villes intelligente, usines intelligentes)

• Applications liées à la 5G (voitures autonomes etc.)
7 / 25



Autres concepts associés



Local et réparti

• Local : événements ou actions arrivant à un unique endroit

• Réparti (ou distribué) : événements ou actions arrivant à plusieurs endroits

Dans une architecture distribuée, chaque composant peut être exécuté sur des

ressources différentes réparties sur le réseau. Certaines de leurs actions sont locales

mais d’autres sont communes et réparties entre les composants.

Machine1 : Action1 et Action 2

Machine2 : Action2 et Action3

Machine3 : Action3 et Action4

8 / 25



Séquentiel et parallèle

• Séquentiel : des actions ordonnées totalement en suivant un temps linéaire

• Parallèle : des actions ordonnées partiellement en suivant des temps parallèles

Dans une architecture distribuée, chaque composant exécute des actions qui lui sont

propres, il y a donc nécessairement du parallélisme entre les actions des différents

composants.

Composant1 : Action1 → Action2 → Action 3 → · · · → ActionN

Composant2 : Action1’ → Action2’ → Action3’

9 / 25



Concurrence

On parle de concurrence lorsque le parallèle doit devenir séquentiel, autrement dit

lorsque l’on a besoin d’une coordination temporelle entre les actions.

Par exemple lorsque 2 actions parallèles accèdent à la même ressource.

→ nécessité d’accès entrelacés à la ressource, ce qui revient à du séquentiel

10 / 25



Mémoire partagée et distribuée

• Une mémoire est partagée lorsque le même adressage mémoire est utilisé entre
plusieurs processus, composants, agents etc.

• Ex : architecture multi-core et RAM de nos ordinateurs

• Pas de communication nécessaire entre les éléments qui accèdent à la ressource mais

une coordination est obligatoire pour conserver des informations cohérentes

• Problème de concurrence

• Une mémoire est distribuée lorsque l’adressage mémoire est différent pour les
processus, composants, agents etc.

• Ex : plusieurs machines sur un réseau

• Besoin de faire communiquer les éléments pour accéder à une ressource distante

• Echange de messages

Dans cette UE nous nous intéressons à des mémoires distribuées et au passage de

messages entre les composants

11 / 25



Communications synchrones et asynchrones

• Une communication synchrone nécessite que les éléments concernés par la
communication soient prêts à communiquer en même temps

• synchronisation temporelle des entités distribuées

• Une communication asynchrone permet aux éléments concernés par la
communication de continuer ce qu’ils ont à faire en attendant que l’information
utile leur soit transmise

• notion d’émetteur et de récepteur

• une abscence de synchronisation temporelle ne signifie pas une abscence de

dépendance (attente d’une information)

12 / 25



Quelques grands types

d’architectures distribuées



Architecture Client/Serveur

Client 1

Client 2

Serveur

Laptop

iPad

• Séparation entre les composants qui

• consomment des ressources ou services

• clients

• fournissent des ressources ou services

• serveurs

• Très classique et très utilisé

• Ex. architectures client/serveur : Google

drive, Dropbox etc.

• Frontend / backend

13 / 25



Architecture Master/Worker

Master

Worker 1

Worker 2

Worker N

...

• Separation du travail entre les composants qui

• travaillent : workers

• réception de tâches

• exécution de tâches

• notification de fin de tâche

• coordonnent le travail des workers : masters

• réception des requêtes

• division du travail en tâches

• distribution des tâches aux workers

• Ici on se place plutôt côté serveur (backend)

• Attention diviser le travail n’est pas trivial !

• Ex. d’architecture master/worker: Apache

Spark

14 / 25



Architecture pair-à-pair (p2p)

pair

pair
pair

pair

pair

• Séparation du travail ou des ressources

• Pas de privilèges : tous les pairs sont
identiques et à la fois client et serveur

• fournir et consommer des ressources

• mais il y a souvent une notion de leader pour

permettre les connexions de nouveaux pairs à

un réseau p2p

• On parle d’architecture complètement

décentralisée

• Architecture popularisée dans les années 2000

• Napster : partage décentralisé de fichiers

musicaux

• Très tolérant aux pannes

• pas de point central, le leader peut être changé15 / 25



Architecture à événements

Publisher 1

Publisher 2

Subscriber 1

Subscriber 2

Publisher 3
Subscriber 3

Broker

• Les composants sont tous vus comme des
éléments qui

• envoient des événements sur leurs activités

locales : publisher

• s’abonnent et recoivent des événements des

autres composants : subscriber

• Pas de communication synchrones entre les

composants (asynchrone)

• Gestion tierce des événements et de leur

diffusion : broker

• Ex. technos : systèmes de publish-subscribe,

message broker

• Ex. architectures événements : IoT
16 / 25



Architecture orientée services (SOA)

Service 1 Service 3

Service 4

Service 2 Service 5

• Les composants sont considérés comme des

services

• Chaque service peut utiliser d’autres services

• dépendances entre services

• hiérarchie de services

• Les services sont vus comme des bôıtes noires

• Concepts de courtier entre services

• Concept de découverte de services

• Concept d’interfaces ou de contrat pour savoir

ce qu’offre un service

17 / 25



Architecture micro-services

Service 1

Service 2

Service 3

Service 4

Service 5

• Très largement hérité du SOA

• Architecture dite ”Cloud native”

• se prête très bien à la conteneurisation

• se prête très bien au déploiement sur le Cloud

• “micro” ne veut pas forcément dire petit

• un micro-service peut être conséquent

• mais un micro-service est difficilement

découpable en sous éléments

• Dépendances plates, pas de hiérarchie

• Même besoins qu’en SOA : découverte,

interfaces etc.

• Ex. Architectures micro-services : Netflix,

Twitter
18 / 25



Architecture serverless ?

Ce terme est plutôt lié en particulier à l’utilisation du Cloud

Attention ! Ca ne veut pas dire qu’il n’y a pas de serveurs !

• Serveurs gérés par une tierce partie

• Eviter à l’utilisateur de gérer le backend

• 2 services types dans le Cloud :

• FaaS : Function-as-a-Service

• BaaS : Backend-as-a-Service (BD, security etc.)

• Ex. technos : AWS lambda, Google Cloud functions

19 / 25



Combinaison des architectures distribuées

Certaines de ces architectures sont compatibles les unes avec les autres !

Exemples

• On peut avoir une architecture pair-à-pair qui utilise un système événementiel

• On peut avoir une architecture micro-services avec du client serveur ou du
master/worker

• Ex : dropbox

20 / 25



Et cette UE ?



Focus de cette UE

Les architectures orientées services et micro-services !

Pourquoi ?

• Très répandu et apprécié des entreprises

• Web

• IoT

• Cloud

• Flexible et évolutif

• Séparation claire entre le développeur, le DevOps et l’opérateur

• Grand nombre d’outils pour gérer des applications micro-services

• Docker, DockerCompose

• Kubernetes

• Compatible avec les autres architectures

21 / 25



Focus sur le concept d’API

• API = Application Programming Interface

• Interfaces permettant de savoir ce que fournit un micro-service

• Contrat entre le fournisseur et le consommateur de services

• C’est l’API qui permet de découpler les différents services

Ce que nous allons faire ensemble

• Concevoir et implémenter une application micro-services en Python

• Définir différents type d’interfaces pour les micro-services

• Documenter les interfaces

• Utiliser Docker et Docker-compose

• Utiliser une BD NoSQL

• Développer votre propre projet

22 / 25


	Architectures distribuées
	Autres concepts associés
	Quelques grands types d'architectures distribuées
	Et cette UE ?
	Déroulement de l'UE

