
Terraform - Infrastructure-as-Code (IaC)
LOGIN UE NUAGE et DEVOPS

Eloi Perdereau, Hélène Coullon
https://helene-coullon.fr/pages/ue-nuage-23-24/

IMT Atlantique

https://helene-coullon.fr/pages/ue-nuage-23-24/


Table of contents

1. Introduction

2. Concepts of Terraform

3. Providers

4. Good practices

5. Your turn...

1



Introduction



What you have seen so far

• Virtualization and hypervisors
• Foundation of the Cloud computing

• OpenStack
• The open-source operating system of the Cloud
• Could be used for public and private Clouds

• OVH Cloud (public)
• IMT Atlantique (private)

• Docker and Docker compose
• automate deployments
• make deployments portable

• Kubernetes
• orchestration of containerized applications
• continuously organize, monitor, update, heal containers

2



DevOps and Cloud is a large ecosystem

3



DevOps (SRE) skills

Colors

• already known

• this course

• What is not studied in FIL

1. Concepts of development
2. Operating systems [DEVOS]
3. Networking and security
4. Containers
5. Automated CI/CD [HACKATON, PROCOM]
6. Cloud providers
7. Containers orchestration
8. Monitoring
9. Infrastructure as Code
10. Scripting
11. Version control

4

https://www.youtube.com/watch?v=0yWAtQ6wYNM


Terraform

• This module is at the crossroads of Cloud computing and Infrastructure-as-Code
• Terraform is an IaC tool initially made to provision resources on Cloud providers

• Terraform is a provisioning tool (as Pulumi)
• Terraform is not a configuration tool (Ansible is)
• Terraform is not specific to containerized apps and systems (Docker, docker-compose and
Kubernetes are)

5



Advantages of Terraform

• Terraform can manage infrastructure on multiple Cloud platforms.
• The human-readable configuration language helps you write infrastructure code.
• Terraform’s state allows you to track resource changes throughout your deployments.
• You can commit your configurations to version control to collaborate safely.
• 1,000 providers to manage resources on Amazon Web Services (AWS), Azure, Google
Cloud Platform (GCP), etc.

• You can compose resources from different providers into reusable Terraform
configurations called modules.

• Terraform’s configuration language is declarative, meaning that it describes the
desired end-state for your infrastructure, not how to get it.

6



Why Terraform?

I can do that through the graphical interfaces of Cloud providers! Yes but...
• Long and error-prone manual procedures.
• Difficult and error-prone when collaborating.
• Not scalable.

I can do that with Cloud providers CLIs and scripts! Yes but...
• You have to know as many CLIs as the number of Cloud providers you are using.
• A script is less specialized and structured than IaC, more difficult to write/read and
maintain.

• You have to manually handle the state of your infrastructure which is difficult and
error prone.

7



Concepts of Terraform



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.

• The order is defined when resources refer to each other.
• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

8



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.
• The order is defined when resources refer to each other.

• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

8



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.
• The order is defined when resources refer to each other.
• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

8



Basic Architecture

Resources
• A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.

• Providers furnish an API that lists
1. Available resource types.
2. For each of them their parameters.

Terraform Core
• Configuration : every .tf files⇒ resources declarations.
• The current directory constitutes the root module.
• State file : contains the current state of resources under Terraform’s management.
• Upon each CLI call, the state file is refreshed with the actual resources.

Terraform detects changes in the configuration and plan API calls accordingly.

9



Basic Architecture

Resources
• A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.

• Providers furnish an API that lists
1. Available resource types.
2. For each of them their parameters.

Terraform Core
• Configuration : every .tf files⇒ resources declarations.
• The current directory constitutes the root module.
• State file : contains the current state of resources under Terraform’s management.
• Upon each CLI call, the state file is refreshed with the actual resources.

Terraform detects changes in the configuration and plan API calls accordingly.

9



Basic Architecture

Resources
• A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.

• Providers furnish an API that lists
1. Available resource types.
2. For each of them their parameters.

Terraform Core
• Configuration : every .tf files⇒ resources declarations.
• The current directory constitutes the root module.
• State file : contains the current state of resources under Terraform’s management.
• Upon each CLI call, the state file is refreshed with the actual resources.

Terraform detects changes in the configuration and plan API calls accordingly.
9



Commands for different stages

terraform init
Initialize the working directory and download providers.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
‘.tf‘ configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

10



Commands for different stages

terraform init
Initialize the working directory and download providers.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
‘.tf‘ configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

10



Commands for different stages

terraform init
Initialize the working directory and download providers.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
‘.tf‘ configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

10



Commands for different stages

terraform init
Initialize the working directory and download providers.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
‘.tf‘ configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

10



HCL Language Syntax (1): Attributes

aka ”argument”, ”parameter”, ”field”, ”property”, ”key-value pair”, ”entry”
Attributes are distinguished with the equal sign = meaning assignment.
The value can be any expressions: function calls, lists, objects, references, etc.

• name = "redis server"
• credentials = file("./creds.json")
• labels = { app = "redis" }
• image = docker_image.myimage.name
• etc.

Multiple definitions of an attribute are forbidden. They are single assignment.

In addition to arguments within a block, there are a few meta attributes that have special
semantics, e.g. count, for_each and depends_on.

11



HCL Language Syntax (1): Attributes

aka ”argument”, ”parameter”, ”field”, ”property”, ”key-value pair”, ”entry”
Attributes are distinguished with the equal sign = meaning assignment.
The value can be any expressions: function calls, lists, objects, references, etc.

• name = "redis server"
• credentials = file("./creds.json")
• labels = { app = "redis" }
• image = docker_image.myimage.name
• etc.

Multiple definitions of an attribute are forbidden. They are single assignment.

In addition to arguments within a block, there are a few meta attributes that have special
semantics, e.g. count, for_each and depends_on.

11



HCL Language Syntax (2): Blocks

Blocks
e.g. resource "docker_image" "redis" { ... }

• Have a mandatory key identifier, here resource. It have a meaning in the context
where it is defined, like standard attributes.

• Strings can be attached, here docker_image and redis.
• They can be referred in another part of the .tf configuration.

Block can be embedded. e.g. in a container resource:
mounts { volume_options { no_copy = true }}
Multiple embedded blocks with the same keyword are sometimes allowed. It usually
results in a list of objects. e.g. to refer to a particular mount option:
mounts[0].volume_options[0].no_copy

12



HCL Language Syntax (2): Blocks

Blocks
e.g. resource "docker_image" "redis" { ... }

• Have a mandatory key identifier, here resource. It have a meaning in the context
where it is defined, like standard attributes.

• Strings can be attached, here docker_image and redis.
• They can be referred in another part of the .tf configuration.

Block can be embedded. e.g. in a container resource:
mounts { volume_options { no_copy = true }}

Multiple embedded blocks with the same keyword are sometimes allowed. It usually
results in a list of objects. e.g. to refer to a particular mount option:
mounts[0].volume_options[0].no_copy

12



HCL Language Syntax (2): Blocks

Blocks
e.g. resource "docker_image" "redis" { ... }

• Have a mandatory key identifier, here resource. It have a meaning in the context
where it is defined, like standard attributes.

• Strings can be attached, here docker_image and redis.
• They can be referred in another part of the .tf configuration.

Block can be embedded. e.g. in a container resource:
mounts { volume_options { no_copy = true }}
Multiple embedded blocks with the same keyword are sometimes allowed. It usually
results in a list of objects. e.g. to refer to a particular mount option:
mounts[0].volume_options[0].no_copy

12



Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider and variables
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• The resource block is the main state declarations of managed resources.

• The data block is for read-only resource.
• The provider block sets configuration parameters for a provider.
• Blocks for module variables

There are a few other top-level blocks, e.g. module, check, import.

13



Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider and variables
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• The resource block is the main state declarations of managed resources.
• The data block is for read-only resource.

• The provider block sets configuration parameters for a provider.
• Blocks for module variables

There are a few other top-level blocks, e.g. module, check, import.

13



Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider and variables
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• The resource block is the main state declarations of managed resources.
• The data block is for read-only resource.
• The provider block sets configuration parameters for a provider.

• Blocks for module variables

There are a few other top-level blocks, e.g. module, check, import.

13



Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider and variables
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• The resource block is the main state declarations of managed resources.
• The data block is for read-only resource.
• The provider block sets configuration parameters for a provider.
• Blocks for module variables

There are a few other top-level blocks, e.g. module, check, import.

13



Variables and References

Variables
Modules (including the root module) can have three kinds of user variables:
Inputs, Outputs, and Locals.

Declared with the variable, output, and locals top-level blocks respectively.

References to resources, data sources and variables
• Resources attributes are referenced with type and name of the resource, e.g.

docker_image.redis.image_id
• To reference a data source, we use the keyword data, e.g.

data.docker_image.redis.image_id.
• For input and local variables, we use var and local keywords, e.g.

var.my_input_var
local.my_local_var

• Terraform has other such special variable keywords, e.g. module, each, path.

14



Variables and References

Variables
Modules (including the root module) can have three kinds of user variables:
Inputs, Outputs, and Locals.

Declared with the variable, output, and locals top-level blocks respectively.

References to resources, data sources and variables
• Resources attributes are referenced with type and name of the resource, e.g.

docker_image.redis.image_id
• To reference a data source, we use the keyword data, e.g.

data.docker_image.redis.image_id.
• For input and local variables, we use var and local keywords, e.g.

var.my_input_var
local.my_local_var

• Terraform has other such special variable keywords, e.g. module, each, path.
14



Providers



Provider registry

15



Good practices



Good practices

Objective: avoid troubleshooting

• Read and understand carefully each declarations and plan.
• Version control your Terraform codes. Beware not to commit secrets.
• CI/CD on your Terraform infrastructure.
• Store the Terraform state files on remote storages with lock mechanisms.

16



Your turn...


	Introduction
	Concepts of Terraform
	Providers
	Good practices
	Your turn...

