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Introduction



What you have seen so far

• Virtualization and hypervisors
• Foundation of the Cloud computing

• OpenStack
• The open-source operating system of the Cloud
• Could be used for public and private Clouds

• OVH Cloud (public)
• IMT Atlantique (private)

• Docker and Docker compose
• automate deployments
• make deployments portable

• Kubernetes
• orchestration of containerized applications
• continuously organize, monitor, update, heal containers
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DevOps and Cloud is a large ecosystem

3



DevOps (SRE) skills

Colors

• already known

• this course

• What is not studied in FIL

1. Concepts of development
2. Operating systems [DEVOS]
3. Networking and security
4. Containers
5. Automated CI/CD [HACKATON, PROCOM]
6. Cloud providers
7. Containers orchestration
8. Monitoring
9. Infrastructure as Code
10. Scripting
11. Version control
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Terraform

• This module is at the crossroads of Cloud computing and Infrastructure-as-Code
• Terraform is an IaC tool initially made to provision resources on Cloud providers

• Terraform is a provisioning tool (as Pulumi)
• Terraform is not a configuration tool (Ansible is)
• Terraform is not specific to containerized apps and systems (Docker, docker-compose and
Kubernetes are)
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Advantages of Terraform

• Terraform can manage infrastructure on multiple Cloud platforms.
• The human-readable configuration language helps you write infrastructure code.
• Terraform’s state allows you to track resource changes throughout your deployments.
• You can commit your configurations to version control to collaborate safely.
• 1,000 providers to manage resources on Amazon Web Services (AWS), Azure, Google
Cloud Platform (GCP), etc.

• You can compose resources from different providers into reusable Terraform
configurations called modules.

• Terraform’s configuration language is declarative, meaning that it describes the
desired end-state for your infrastructure, not how to get it.
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Why Terraform?

I can do that through the graphical interfaces of Cloud providers! Yes but...
• Long and error-prone manual procedures.
• Difficult and error-prone when collaborating.
• Not scalable.

I can do that with Cloud providers CLIs and scripts! Yes but...
• You have to know as many CLIs as the number of Cloud providers you are using.
• A script is less specialized and structured than IaC, more difficult to write/read and
maintain.

• You have to manually handle the state of your infrastructure which is difficult and
error prone.
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Concepts of Terraform



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.

• The order is defined when resources refer to each other.
• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).
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Basic Architecture

Resources
• A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.

• Providers furnish an API that lists
1. Available resource types.
2. For each of them their parameters.

Terraform Core
• Configuration : every .tf files⇒ resources declarations.
• The current directory constitutes the root module.
• State file : contains the current state of resources under Terraform’s management.
• Upon each CLI call, the state file is refreshed with the actual resources.

Terraform detects changes in the configuration and plan API calls accordingly.
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Commands for different stages

terraform init
Initialize the working directory and download providers.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
‘.tf‘ configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.
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HCL Language Syntax (1): Attributes

aka ”argument”, ”parameter”, ”field”, ”property”, ”key-value pair”, ”entry”
Attributes are distinguished with the equal sign = meaning assignment.
The value can be any expressions: function calls, lists, objects, references, etc.

• name = "redis server"
• credentials = file("./creds.json")
• labels = { app = "redis" }
• image = docker_image.myimage.name
• etc.

Multiple definitions of an attribute are forbidden. They are single assignment.

In addition to arguments within a block, there are a few meta attributes that have special
semantics, e.g. count, for_each and depends_on.
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HCL Language Syntax (2): Blocks

Blocks
e.g. resource "docker_image" "redis" { ... }

• Have a mandatory key identifier, here resource. It have a meaning in the context
where it is defined, like standard attributes.

• Strings can be attached, here docker_image and redis.
• They can be referred in another part of the .tf configuration.

Block can be embedded. e.g. in a container resource:
mounts { volume_options { no_copy = true }}
Multiple embedded blocks with the same keyword are sometimes allowed. It usually
results in a list of objects. e.g. to refer to a particular mount option:
mounts[0].volume_options[0].no_copy
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Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider and variables
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• The resource block is the main state declarations of managed resources.

• The data block is for read-only resource.
• The provider block sets configuration parameters for a provider.
• Blocks for module variables

There are a few other top-level blocks, e.g. module, check, import.
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Variables and References

Variables
Modules (including the root module) can have three kinds of user variables:
Inputs, Outputs, and Locals.

Declared with the variable, output, and locals top-level blocks respectively.

References to resources, data sources and variables
• Resources attributes are referenced with type and name of the resource, e.g.

docker_image.redis.image_id
• To reference a data source, we use the keyword data, e.g.

data.docker_image.redis.image_id.
• For input and local variables, we use var and local keywords, e.g.

var.my_input_var
local.my_local_var

• Terraform has other such special variable keywords, e.g. module, each, path.
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Providers



Provider registry
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Good practices



Good practices

Objective: avoid troubleshooting

• Read and understand carefully each declarations and plan.
• Version control your Terraform codes. Beware not to commit secrets.
• CI/CD on your Terraform infrastructure.
• Store the Terraform state files on remote storages with lock mechanisms.
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Your turn...
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