
Terraform - Infrastructure-as-Code (IaC)

Eloi Perdereau, Hélène Coullon
https://helene-coullon.fr/pages/ue-terraform-24-25/

IMT Atlantique

https://helene-coullon.fr/pages/ue-terraform-24-25/


Table of contents

1. Introduction

2. Concepts Terraform

3. Good practices

4. Your turn...

1



Introduction



DevOps

DevOps practices tries to reduce the time of release cycles, make more flexible (agile)
software development etc., by bridging the gap between development and operation.

2



Relationship between DevOps and Cloud computing?

Lots of applications are now migrated to micro-serices architectures and are deployed in
the Cloud because

• servers are operated by a tiers
• companies pay only what they consume
• easy elasticity
• etc.

→ DevOps cycles very often integrate Cloud operations.

3



Infrastructures = APIs

The Cloud computing paradigm has transformed infrastructure (also platforms and
software) to external APIs to request.

Nowadays infrastructures are like any piece of software offering services.

• request for a bucket to store content,
• request for a GKE cluster to host micro-services applications,
• request for VMs to install databases or larger software,
• etc.

4



Example

5



What is Infrastructure-as-Code?

Infrastructure-as-Code (IaC)

• Avoid manual or ad-hoc way of handling (create, update, delete) complex
infrastructures,

• see infrastructure management as codes that can be shared, versioned, automated
etc..

Associated concepts

• imperative/declarative
• idempotence

6



Different types of Infrastructure-as-Code

Configuration management
Originally made to automate and make more reusable and flexible the configuration of
servers, machines, virtual machines

• Puppet
• Chef
• Ansible

7



Different types of Infrastructure-as-Code

Provisioning tools
Originally made to automate and make more reusable, flexible and safe the
management of Cloud infrastructures

• Heat (OpenStack)
• Cloud Formation (AWS)
• Terraform
• Pulumi

8



Different types of Infrastructure-as-Code

Orchestration tools
Made to orchestrate the lifespans of a large set of containers and their deployment on
servers

• Dockerswarm
• Kubernetes
• Nomad

9



Provisioning

In this module we focus on one declarative provisioning tool: terraform

• state: the current state of the infrasturcture and the desired state specified by the
user. Both can change over time.

• reconciliation: declarative IaC provisioning tools try to reconcile the current state
with the desired state.

• plan: to reconcile, declarative IaC tools automatically generate a plan to
execute/apply.

10



Why using a provisioning tool?

I can do that through the graphical interfaces of Cloud providers! Yes but...
• Long and error-prone manual procedures.
• Difficult and error-prone when collaborating.
• No clear/central vision of the state of your infrastructure.
• Not scalable.

I can do that with Cloud providers CLIs and scripts! Yes but...
• You have to know as many CLIs as the number of Cloud providers you are using.
• A script is less specialized and structured than IaC, more difficult to write/read and
maintain.

• You have to manually handle the state of your infrastructure which is difficult and
error prone.

11



Other Provisioning IaC Tools

Specific to Cloud Providers
• CloudFormation: Typescript classes for AWS
• Azure Resource Manager (ARM): custom DSL for Azure
• Heat: YAML templates for OpenStack

Comparatively, Terraform can handle all cloud providers within a single state file.

Pulumi
• Competitor of Terraform. Same purposes.
• Reuses Terraform providers
• Agnostic of the Language: DevOps can use Python, NodeJS, .NET, Go or YAML

12



Concepts Terraform



Concepts of Terraform

 Users

 Providers

13



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.

• The order is defined when resources refer to each other.
• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

14



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.
• The order is defined when resources refer to each other.

• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

14



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.
• The order is defined when resources refer to each other.
• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

14



Basic Architecture

Resources
• A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.

• Providers furnish an API that lists
1. Available resource types.
2. For each of them their parameters.

Terraform Core
• Configuration : every .tf files⇒ resources declarations.
• The current directory constitutes the root module.
• State file : contains the current state of resources under Terraform’s management.
• Upon each CLI call, the state file is refreshed with the actual resources.

Terraform detects changes in the configuration and plan API calls accordingly.

15



Basic Architecture

Resources
• A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.

• Providers furnish an API that lists
1. Available resource types.
2. For each of them their parameters.

Terraform Core
• Configuration : every .tf files⇒ resources declarations.
• The current directory constitutes the root module.
• State file : contains the current state of resources under Terraform’s management.
• Upon each CLI call, the state file is refreshed with the actual resources.

Terraform detects changes in the configuration and plan API calls accordingly.

15



Basic Architecture

Resources
• A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.

• Providers furnish an API that lists
1. Available resource types.
2. For each of them their parameters.

Terraform Core
• Configuration : every .tf files⇒ resources declarations.
• The current directory constitutes the root module.
• State file : contains the current state of resources under Terraform’s management.
• Upon each CLI call, the state file is refreshed with the actual resources.

Terraform detects changes in the configuration and plan API calls accordingly.
15



Terraform Workflow Illustration

16



Commands for different stages

terraform init
Initialize the working directory and download providers.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
.tf configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

17



Commands for different stages

terraform init
Initialize the working directory and download providers.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
.tf configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

17



Commands for different stages

terraform init
Initialize the working directory and download providers.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
.tf configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

17



Commands for different stages

terraform init
Initialize the working directory and download providers.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
.tf configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

17



HCL Language Syntax (1): Attributes

aka ”argument”, ”field”
Attributes are distinguished with the equal sign = meaning assignment.
The value can be any expressions: function calls, lists, objects, references, etc.

• name = "redis server"
• credentials = file("./creds.json")
• labels = { app = "redis" }
• image = docker_image.redis.name
• etc.

Multiple definitions of an attribute are forbidden. They are single assignment.

In addition to arguments within a block, there are a few meta attributes that have special
semantics, e.g. count, for_each and depends_on.

18



HCL Language Syntax (1): Attributes

aka ”argument”, ”field”
Attributes are distinguished with the equal sign = meaning assignment.
The value can be any expressions: function calls, lists, objects, references, etc.

• name = "redis server"
• credentials = file("./creds.json")
• labels = { app = "redis" }
• image = docker_image.redis.name
• etc.

Multiple definitions of an attribute are forbidden. They are single assignment.

In addition to arguments within a block, there are a few meta attributes that have special
semantics, e.g. count, for_each and depends_on.

18



HCL Language Syntax (2): Blocks

Blocks
e.g. resource "docker_image" "redis" { ... }

• Have a mandatory key identifier, here resource. It have a meaning in the context
where it is defined, like standard attributes.

• Strings can be attached, here docker_image and redis.
• They can be referred in another part of the .tf configuration.

Block can be embedded. e.g. in a container resource:
mounts { volume_options { no_copy = true }}
Multiple embedded blocks with the same keyword are sometimes allowed. It usually
results in a list of objects. e.g. to refer to a particular mount option:
mounts[0].volume_options[0].no_copy

19



HCL Language Syntax (2): Blocks

Blocks
e.g. resource "docker_image" "redis" { ... }

• Have a mandatory key identifier, here resource. It have a meaning in the context
where it is defined, like standard attributes.

• Strings can be attached, here docker_image and redis.
• They can be referred in another part of the .tf configuration.

Block can be embedded. e.g. in a container resource:
mounts { volume_options { no_copy = true }}

Multiple embedded blocks with the same keyword are sometimes allowed. It usually
results in a list of objects. e.g. to refer to a particular mount option:
mounts[0].volume_options[0].no_copy

19



HCL Language Syntax (2): Blocks

Blocks
e.g. resource "docker_image" "redis" { ... }

• Have a mandatory key identifier, here resource. It have a meaning in the context
where it is defined, like standard attributes.

• Strings can be attached, here docker_image and redis.
• They can be referred in another part of the .tf configuration.

Block can be embedded. e.g. in a container resource:
mounts { volume_options { no_copy = true }}
Multiple embedded blocks with the same keyword are sometimes allowed. It usually
results in a list of objects. e.g. to refer to a particular mount option:
mounts[0].volume_options[0].no_copy

19



Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider and variables
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• The resource block is the main state declarations of managed resources.

• The data block is for read-only resource.
• The provider block sets configuration parameters for a provider.
• Blocks for module variables

There are a few other top-level blocks, e.g. module, check, import.

20



Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider and variables
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• The resource block is the main state declarations of managed resources.
• The data block is for read-only resource.

• The provider block sets configuration parameters for a provider.
• Blocks for module variables

There are a few other top-level blocks, e.g. module, check, import.

20



Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider and variables
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• The resource block is the main state declarations of managed resources.
• The data block is for read-only resource.
• The provider block sets configuration parameters for a provider.

• Blocks for module variables

There are a few other top-level blocks, e.g. module, check, import.

20



Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider and variables
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• The resource block is the main state declarations of managed resources.
• The data block is for read-only resource.
• The provider block sets configuration parameters for a provider.
• Blocks for module variables

There are a few other top-level blocks, e.g. module, check, import.

20



Variables and References

Variables
Modules (including the root module) can have three kinds of user variables:
Inputs, Outputs, and Locals.

Declared with the variable, output, and locals top-level blocks respectively.

References to resources, data sources and variables
• Resources attributes are referenced with type and name of the resource, e.g.

docker_image.redis.image_id
• To reference a data source, we use the keyword data, e.g.

data.docker_image.redis.image_id.
• For input and local variables, we use var and local keywords, e.g.

var.my_input_var
local.my_local_var

• Terraform has other such special variable keywords, e.g. module, each, path.

21



Variables and References

Variables
Modules (including the root module) can have three kinds of user variables:
Inputs, Outputs, and Locals.

Declared with the variable, output, and locals top-level blocks respectively.

References to resources, data sources and variables
• Resources attributes are referenced with type and name of the resource, e.g.

docker_image.redis.image_id
• To reference a data source, we use the keyword data, e.g.

data.docker_image.redis.image_id.
• For input and local variables, we use var and local keywords, e.g.

var.my_input_var
local.my_local_var

• Terraform has other such special variable keywords, e.g. module, each, path.
21



Good practices



Good practices

Objective: avoid troubleshooting

• Read and understand carefully each declarations and plan.
• Version control your Terraform codes. Beware not to commit secrets.
• CI/CD on your Terraform infrastructure.
• Store the Terraform state files on remote storages with lock mechanisms.

22



Your turn...


	Introduction
	Concepts Terraform
	Good practices
	Your turn...

