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Introduction



DevOps

DevOps practices tries to reduce the time of release cycles, make more flexible (agile)
software development etc., by bridging the gap between development and operation.
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Relationship between DevOps and Cloud computing?

Lots of applications are now migrated to micro-serices architectures and are deployed in
the Cloud because

• servers are operated by a tiers
• companies pay only what they consume
• easy elasticity
• etc.

→ DevOps cycles very often integrate Cloud operations.
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Infrastructures = APIs

The Cloud computing paradigm has transformed infrastructure (also platforms and
software) to external APIs to request.

Nowadays infrastructures are like any piece of software offering services.

• request for a bucket to store content,
• request for a GKE cluster to host micro-services applications,
• request for VMs to install databases or larger software,
• etc.
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Example
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What is Infrastructure-as-Code?

Infrastructure-as-Code (IaC)

• Avoid manual or ad-hoc way of handling (create, update, delete) complex
infrastructures,

• see infrastructure management as codes that can be shared, versioned, automated
etc..

Associated concepts

• imperative/declarative
• idempotence
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Different types of Infrastructure-as-Code

Configuration management
Originally made to automate and make more reusable and flexible the configuration of
servers, machines, virtual machines

• Puppet
• Chef
• Ansible
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Different types of Infrastructure-as-Code

Provisioning tools
Originally made to automate and make more reusable, flexible and safe the
management of Cloud infrastructures

• Heat (OpenStack)
• Cloud Formation (AWS)
• Terraform
• Pulumi
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Different types of Infrastructure-as-Code

Orchestration tools
Made to orchestrate the lifespans of a large set of containers and their deployment on
servers

• Dockerswarm
• Kubernetes
• Nomad
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Provisioning

In this module we focus on one declarative provisioning tool: terraform

• state: the current state of the infrasturcture and the desired state specified by the
user. Both can change over time.

• reconciliation: declarative IaC provisioning tools try to reconcile the current state
with the desired state.

• plan: to reconcile, declarative IaC tools automatically generate a plan to
execute/apply.
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Why using a provisioning tool?

I can do that through the graphical interfaces of Cloud providers! Yes but...
• Long and error-prone manual procedures.
• Difficult and error-prone when collaborating.
• No clear/central vision of the state of your infrastructure.
• Not scalable.

I can do that with Cloud providers CLIs and scripts! Yes but...
• You have to know as many CLIs as the number of Cloud providers you are using.
• A script is less specialized and structured than IaC, more difficult to write/read and
maintain.

• You have to manually handle the state of your infrastructure which is difficult and
error prone.
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Other Provisioning IaC Tools

Specific to Cloud Providers
• CloudFormation: Typescript classes for AWS
• Azure Resource Manager (ARM): custom DSL for Azure
• Heat: YAML templates for OpenStack

Comparatively, Terraform can handle all cloud providers within a single state file.

Pulumi
• Competitor of Terraform. Same purposes.
• Reuses Terraform providers
• Agnostic of the Language: DevOps can use Python, NodeJS, .NET, Go or YAML
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Concepts Terraform



Concepts of Terraform

 Users

 Providers
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Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.

• The order is defined when resources refer to each other.
• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

14



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.
• The order is defined when resources refer to each other.

• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

14



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.
• The order is defined when resources refer to each other.
• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

14



Basic Architecture

Resources
• A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.

• Providers furnish an API that lists
1. Available resource types.
2. For each of them their parameters.

Terraform Core
• Configuration : every .tf files⇒ resources declarations.
• The current directory constitutes the root module.
• State file : contains the current state of resources under Terraform’s management.
• Upon each CLI call, the state file is refreshed with the actual resources.

Terraform detects changes in the configuration and plan API calls accordingly.
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Terraform Workflow Illustration
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Commands for different stages

terraform init
Initialize the working directory and download providers.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
.tf configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.
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HCL Language Syntax (1): Attributes

aka ”argument”, ”field”
Attributes are distinguished with the equal sign = meaning assignment.
The value can be any expressions: function calls, lists, objects, references, etc.

• name = "redis server"
• credentials = file("./creds.json")
• labels = { app = "redis" }
• image = docker_image.redis.name
• etc.

Multiple definitions of an attribute are forbidden. They are single assignment.

In addition to arguments within a block, there are a few meta attributes that have special
semantics, e.g. count, for_each and depends_on.
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HCL Language Syntax (2): Blocks

Blocks
e.g. resource "docker_image" "redis" { ... }

• Have a mandatory key identifier, here resource. It have a meaning in the context
where it is defined, like standard attributes.

• Strings can be attached, here docker_image and redis.
• They can be referred in another part of the .tf configuration.

Block can be embedded. e.g. in a container resource:
mounts { volume_options { no_copy = true }}
Multiple embedded blocks with the same keyword are sometimes allowed. It usually
results in a list of objects. e.g. to refer to a particular mount option:
mounts[0].volume_options[0].no_copy
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Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider and variables
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• The resource block is the main state declarations of managed resources.

• The data block is for read-only resource.
• The provider block sets configuration parameters for a provider.
• Blocks for module variables

There are a few other top-level blocks, e.g. module, check, import.
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Variables and References

Variables
Modules (including the root module) can have three kinds of user variables:
Inputs, Outputs, and Locals.

Declared with the variable, output, and locals top-level blocks respectively.

References to resources, data sources and variables
• Resources attributes are referenced with type and name of the resource, e.g.

docker_image.redis.image_id
• To reference a data source, we use the keyword data, e.g.

data.docker_image.redis.image_id.
• For input and local variables, we use var and local keywords, e.g.

var.my_input_var
local.my_local_var

• Terraform has other such special variable keywords, e.g. module, each, path.
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Good practices



Good practices

Objective: avoid troubleshooting

• Read and understand carefully each declarations and plan.
• Version control your Terraform codes. Beware not to commit secrets.
• CI/CD on your Terraform infrastructure.
• Store the Terraform state files on remote storages with lock mechanisms.
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Your turn...
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