
Linux containers and the Docker environment

Hélène Coullon, Eloi Perdereau

IMT Atlantique, TAF LOGIN FISE A3



Table of contents

1. Introduction

2. What is a container?

3. What is under the hood?

4. Docker

5. Create an image with a Dockerfile

6. Volumes

7. A few good practices

8. Deploying a software stack with Docker Compose

1



Introduction



Monoliths vs micro-services

Applications designed as big monoliths

• slow release cycles
• updated infrequently
• lack of flexibility

Micro-services architectures
• smaller, independently running components
• decoupled from each other
• short and independent release cycles

• development
• deployment
• update
• scale

2



Monoliths vs micro-services

3



Problems of micro-services architectures

With bigger numbers of micro-services and increasingly complex data centers to deploy
them

• difficult to correctly configure and deploy the overall system
• difficult to manage the lifecycle of microservices
• difficult to keep the overall system running

Need for automation and orchestration

• automatic configuration and deployment (solved with containers and Docker)
• automatic scheduling of micro-services on servers
• automatic supervision and fault-tolerance

4



Configuration issue example

5



Why not using VMs?

To solve this issue we could

• start as many VM as the number of services
• automate their configuration and the service deployment with Ansible or Bash

Advantages
• strong isolation
• portability
• better usage of the resources of a machine with co-hosted VMs

Disadvantages
• provision and configure each VM
• data duplication (libraries, kernel)
• performance cost

6



Containers

A container is a light virtualization technique

Container technologies
• Application containers: Docker, podman, rkt, contarinerd
• OS container: LXC Linux
• and others like Singularity for safe HPC containers

7

https://podman.io/
https://github.com/rkt/rkt
https://containerd.io/
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html


What is a container?



A bit about Linux kernel

The kernel is the core of the operating system (DEVOS course)

• it is the portion of the OS that is always loaded in memory
• it controls all hardware resources (e.g., I/O, memory, cryptography, CPU) via drivers
• it arbitrates conflicts and concurrency between processes
• it optimizes the utilization of resources (e.g., cache, memory, CPU, file systems,
network)

The kernel is one of the first programs loaded on startup

8



Coarse-grain comparison between VMs and containers

9



Containers

Advantages of containers

• isolation (*)
• portability (*)
• limitations of duplicated resources
• limited impact on performances
• fast startup

The model is different and the way applications are deployed is different!

10



What is under the hood?



A bit more about Linux

In Linux/Unix everything is a file: a file, a directory, a device etc.

The file system
• hierarchical organization of files
• / is root of the file system
• /sys contains system files
• /etc contains config files and scripts
• /media contains hard drives partitions, devices etc.
• etc.

A container is also a set of files!

11



Images

A container image is an archive of files containing

• a root file system
• libraries, packages etc. (i.e., dependencies)
• the application or service to run

The image contains the required environment to run the application or the service on top
of the host kernel.

This environment is portable from one host to another if a compatible kernel is present
(WSL on Windows!)

Registry of images

• DockerHub https://hub.docker.com/
• your own registry can be deployed

12

https://hub.docker.com/


Alpine example

The docker image of Linux Alpine is often used by containers

• it is a very light Linux distribution
• https://hub.docker.com/_/alpine

pull an alpine Docker image

> docker pull alpine
run a container by using the alpine image and start an interactive sh prompt in it

> docker run -it alpine /bin/sh
print the file system of the container

in alpine> ls -al
check there is not any kernel

in alpine> ls /boot
13

https://hub.docker.com/_/alpine


From an image to a container

As seen before an image is an archive of a file system, creating a container consists in

• giving a limited amount of resources to the container
• creating an isolated environment to the container process
• assigning the root file system of the image to the root file system ”/” of the container

cgroups
Linux Control Groups (cgroups) limit the amount of resources a process can consume
(CPU, memory, network bandwidth, and so on)

namespaces
Linux Namespaces make sure each process sees its own personal view of the system
(files, processes, network interfaces, hostname, and so on)

chroot, pivot_root
Change the root filesystem of a process

14



Docker



Overview of Docker

The different pieces involved in the process

• CLI (command line interface)
• Docker runtime
• images and registry
• containers

Docker runtime
• Start and stop containers
• Manage images
• Manage networks
• Manage volumes
• etc.

15



Overview of Docker

16



Structure of Docker images

A Docker image is built by assembling different layers

Storage optimization
• layers are shared by different
images to optimize storage

• to do that each layer is identified
by a hash function according to its
content

17



Writing in a container?

A Docker image is immutable!
At runtime, a virtual layer is created on top
of the image
• it is possible to write in this layer
• this layer is not shared with other
containers

• the layer is destroyed with the container

Volumes
If data has to be persistently stored and
shared between containers, a volume has
to be used

18



Docker CLI

Nothing better than a tutorial to discover the CLI!

19

https://ue-devops-fila2.gitlab-pages.imt-atlantique.fr/docker/02_tuto_cli.html


Create an image with a Dockerfile



Dockerfile principles

A Dockerfile contains a set of commands to build a Docker image

• avoid building images manually
• offers a way for Docker to build layers and avoid useless commands
• a Dockerfile is close to a bash (or a set of Ansible tasks) with instructions to apply

20



Dockerfile through an example

The full documentation is at
https://docs.docker.com/engine/reference/builder/

• FROM to indicate the base image used
to build our image

• RUN to execute a command on top of
the base image

• ENV to declare some environment
variables

• ENTRYPOINT the command to execute
when starting the container

21

https://docs.docker.com/engine/reference/builder/


Another example

• FROM with an image version
• WORKDIR to indicate the working
directory when starting the container

• ADD to add some files from the local
machine to the container image

• CMD the command to execute when
starting the container

Reference documentation

What are the differences between ADD and COPY? What are the differences between
ENTRYPOINT and CMD?

22

https://docs.docker.com/engine/reference/builder/


Build an image with a Dockerfile

docker build [OPTIONS] PATH
> docker build . -t "monapp:latest"

• docker build is the command to build a docker image
• . is the path to find the Dockerfile
• -t is an option to give a name to the image
• by default the Dockerfile is PATH/Dockerfile, you can give another name and use
the -f option

23



Practical session

It is time write a Dockerfile

24

https://gitlab.imt-atlantique.fr/login-nuage/tp-dockerfile


Volumes



Volumes

Two types of volumes

Host volumes
> docker run -v src-dir:dest-dir containe_id
> docker volume ls

Named volumes
> docker volume create nom_volume
> docker run -v nom_volume:dest-dir containe_id
> docker volume ls

The VOLUME [/app/logs] instruction in a Dockerfile only creates the mounting point
in the container. It works without it, but it is a good practice to identify easily the need for
a volume.

25



Practical session

It is time write a Dockerfile with a volume

26

https://gitlab.imt-atlantique.fr/login-nuage/tp-dockerfile


A few good practices



Think about the layers

In the oldest versions of Docker, any line in the Dockerfile created a layer

• too many intermediate layers can be costly costly
• not enough layers can increase the building time
• not enough layers can make impossible storage optimizations
• nowadays only RUN, COPY and ADD create new layers

Good practice 1
Think about your layers when you use RUN, COPY and ADD instructions in your
Dockerfile

27



Reduce image size

Good practice 2
Only install the required dependencies in your Dockerfile

• if using apt to install packages use --no-install-recommends
• if possible delete intermediate files not required when applying RUN

28



Multi-stage build

Good practice 3 - do multi stage build
• reduces the size of images by removing compilation dependencies in the final image
• the final image contains only the dependencies required to run the service
• a base image well adapted for executable files only is scratch or alpine

29



Security

Anyone can push a Docker image on Docker Hub!

Good practice 4 - security
• always prefer official Docker images
• verify that the Docker image is regularly updated
• be sure that the image contains what you think (what are the different layers?)

• > docker history image_name
• tools like dive

• make sure to update the images you are using!

30

https://github.com/wagoodman/dive


Additional good practices

• Exposing ports in Dockerfiles
• EXPOSE 80
• EXPOSE 53/udp

• Adding information with labels
• LABEL maintainer="helene.coullon@imt-atlantique.fr"

• Add environment variables
• ENV ADMIN_USER="mark"
• docker run -e ADMIN_USER="john"

• Add volumes
• VOLUME /myapp/data

31



Practical session

It is time write a multi-stage Dockerfile

32

https://gitlab.imt-atlantique.fr/login-nuage/tp-dockerfile


Deploying a software stack with
Docker Compose



Automating the deployement of containerized applications

• easily deploys a containerized software stack
• define your deployment with a single YAML file (containers, volumes, networks, etc.)
• deployment files easy to share, version control, etc.

33



Structure of compose.yaml
Full specification
• services

• name of the service
• Docker image or build path to
the Dockerfile

• ports exposed by the service
• networks used by the service
• volumes used by the service
• environment variables used by
the service with a value

• depends_on another service

• volumes
• networks

It is very important to understand that Docker compose creates a DNS so that
containers can call each other without knowing their IP addresses!

34

https://docs.docker.com/compose/compose-file/


CLI

Full CLI documentation

A few important commands

• build to build and rebuild services
• up to create and start services, networks, etc.
• stop to stop containers, networks, etc.
• down to stop and remove containers, networks, etc.

35

https://docs.docker.com/compose/reference/


Try to Compose

It is time to try Docker Compose!

You can also explore samples at this link

36

https://docs.docker.com/compose/gettingstarted/
https://github.com/docker/awesome-compose

	Introduction
	What is a container?
	What is under the hood?
	Docker
	Create an image with a Dockerfile
	Volumes
	A few good practices
	Deploying a software stack with Docker Compose

