
Kubernetes
Containers orchestration

Hélène Coullon, Eloi Perdereau

IMT Atlantique



Table of contents

1. Why Kubernetes?

2. Understanding a bit of internals

3. An introduction of concepts through Pods

4. Replicas and controllers

5. Services and ingresses

6. Volumes

7. Deployments

8. Persistent volumes

9. Configuration Management

1



Reference book

This course is highly inspired by the book “Kubernetes in action” written by Marko Lukša

Available online http://sutlib2.sut.ac.th/sut_contents/H173702.pdf

2

http://sutlib2.sut.ac.th/sut_contents/H173702.pdf


Setup your Kubernetes cluster with GKE

Follow this tutorial

3

https://helene-coullon.fr/pages/ue-nuage-login-23-24/tuto-gke/


Why Kubernetes?



Problems of micro-services architectures

with bigger numbers of micro-services and increasingly complex data centers to deploy
them

• difficult to correctly configure and deploy the overall system
• difficult to manage the lifecycle of microservices
• difficult to keep the overall system running

Need for automation and orchestration
• automatic scheduling of micro-services on servers
• automatic configuration and deployment (Docker already helps on this)
• automatic supervision and fault-tolerance

4



Kubernetes

“Google is one of only a few companies in the world that runs hundreds of thousands of
servers and has had to deal with managing deployments on such a massive scale”

• Borg and Omega has been designed for a decade internally
• 2014 Google introduced Kubernetes, an open-source system

Principles
• based on Linux containers
• deploy and manage containerized applications
• no need to know the internal code of the application

Other containers orchestrators: Nomad (Hashicorp), Docker Swarm

5

https://www.nomadproject.io/
https://docs.docker.com/engine/swarm/


Understanding a bit of internals



Kubernetes architecture

As already mentioned a Kubernetes cluster is composed of at least one master node, and
worker nodes.

Let’s see how each node works in more details

6



Master node

Master node
• Kubernetes API server: a user communicate with this API by using kubectl. Internal
services can also communicate with this API.

• Scheduler: schedules applications on worker nodes.
• Controller manager: control all resources of a Kubernetes cluster (including built-in
resources such as pods)

• etcd: is a reliable distributed data store used by Kubernetes to store states of
resources and configuration of the cluster (more details)

Worker node
• Container runtime: Docker, rkt or another
• Kubelet: talks to the API server and manages containers on the node
• kube-proxy: load-balances network traffic between application components

7

https://etcd.io/


An introduction of concepts
through Pods



What is a pod and why do we need it?

basic building block of Kubernetes that co-locates groups of containers with partial
isolation

• same Linux namespaces
• same hostname and network interface
• fully isolated filesystem (image dependent)
• shared volumes possible

Idea

• Put tightly related containers (processes) in the same pod
• “Sidecar” containers that should run close to the main container
• examples: data collector, communication adapters etc.

8



How to know if I need one or two pods?

• do the containers need to be run together or can they run on different hosts?
• do they represent a single whole or are they independent?
• must they be scaled together or individually?

9



Tutorial

Follow this tutorial

10

https://helene-coullon.fr/pages/ue-nuage-login-23-24/tuto-pods/


Running a pod

1. We have created a pod through a command line kubectl

11



Manually exposing a service

2. We have manually exposed the pod through a service of type loadbalancer

12



Resource definition: Manifest

As from Docker to Docker Compose, when handling complex applications we do not want
to manually use the kubectl command line interface!
YAML is the markup language used by Kubernetes to define required resources.
Resources definitions are also known as manifests. This also presents the advantage of
being easily “sharable” and “gitable”

A resource is always specified by two blocks of information:

• metadata: name, namespace, labels, and other information about the resource (e.g.,
pod)

• spec: description of the resource’s content (containers, volumes, etc.)

A third part appears only when the resource is running

• status: current information about the running resource (status, IP, etc.)

13



Example of a pod definition

apiVers ion : v1
kind : Pod
metadata :
name : kubia −manual

spec :
conta iners :
− image : luksa/kubia
name : kubia
ports :
− conta inerPor t : 8080
protocol : TCP

> kubectl create -f kubia-manual.yaml

14



Tutorial

Follow this tutorial

15

https://helene-coullon.fr/pages/ue-nuage-login-23-24/tuto-pods/


Organizing pods with labels

As the number of pods increases we need to categorize them

Let’s imagine a micro-service app:

• 20 services
• 5 of them are replicated 5 times
• three versions may be running: stable, beta, canary

We have a total of 120 services running in our Kubernetes cluster!

Labels
A label is an arbitrary key-value pair you attach to a resource

Labels selector
resources are filtered based on whether they include the label specified in the selector

16



Organizing pods with labels

17



Example

apiVers ion : v1
kind : Pod
metadata :
name : kubia −manual−v2
labe l s :
creation_method : manual
env : prod

spec :
conta iners :
− image : luksa/kubia
name : kubia
ports :
− conta inerPor t : 8080
protocol : TCP

18



Label selector

A label selector can select resources based on whether the resource

• Contains (or doesn’t contain) a label with a certain key
• Contains a label with a certain key and value
• Contains a label with a certain key with a value not equal to the one you specify

Note that labels can also be used to categorize worker nodes in the cluster and then
schedule pods on specific nodes.

19



Annotations

Annotations are also key-value pairs attached to resources but do not have any selector.

They are used to give much larger information about resources and are usually used by
external tools.

20



Namespaces

Labels offer a way to categorize resources.

What if we more strictly want to separate them? Typically if we want to operate on a
subgroup only.

In kubernetes you can group objects (resources) into namespace

• they are not Linux namespaces! (no process isolation by default)
• it is a scope for object names
• same names for resources can be used in different namespaces

21



Existing namespaces

• kube-system: this Namespace is used for system processes like etcd,
kube-scheduler, etc. Do not modify or create any objects in this Namespace, as it is
not meant for users.

• kube-public: this namespace houses publicly accessible data (e.g., a ConfigMap
which stores cluster information like the cluster’s public certificate for
communicating with the Kubernetes API).

• default: every namespaced Kubernetes object that is created without specifying a
namespace goes to the Namespace defined in your client’s configuration. If none are
set, objects go to the default Namespace.

• others

22



Tutorial

Follow this tutorial

23

https://helene-coullon.fr/pages/ue-nuage-login-23-24/tuto-pods/


Replicas and controllers



Liveness probes

Kubelet on worker nodes are responsible for keeping containers running if they crash.
But sometimes the app stops working without a process crash!

Liveness probes
Kubelets can also check if a container is still alive. A liveness probe can be specified for
each container in a pod specification.

Four mechanisms are available to define a liveness probe (Details here)

• HTTP GET probe performs an HTTP GET request on the container’s IP address.
According to the response code the container is known healthy or not.

• GRPC call probe tries to call a remote function in the container.
• TCP socket probe tries to open a TCP connection to the specified port of the
container. The connection is established or not.

• Exec probe executes a command inside the container and checks the command’s
exit status code.

Note: liveness probes are different from readiness probes 24

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#Probe


Example

apiVers ion : v1
kind : Pod
metadata :
name : kubia − l i veness

spec :
conta iners :
− image : luksa/kubia −unhealthy
name : kubia
l ivenessProbe :
httpGet :
path : /
port : 8080

25



Tutorial

Follow this tutorial

26

https://helene-coullon.fr/pages/ue-nuage-login-23-24/tuto-replicas/


Do not handle pods manually!

We have seen that Kubelets can restart failing containers through liveness probes.

No more kubelet?
What if a worker node crashes? No more kubelet are available to handle containers...

For this reason, in real-life pods are not manually created!

Higher-level resources
higher-level resources are used to create and manage pods such as ReplicaSet

Higher-level resources are associated with controllers running on the master node
responsible for maintaining the state of resources and applications. If a worker node
crashes, associated resources will be restarted on another node.

27



Controller’s reconciliation loop

28



ReplicaSets

A Replicaset has three essential parts:

• A label selector, which determines what pods are in the replicaset’s scope
• A replica count, which specifies the desired number of pods that should be running
• A pod template, which is used when creating new pod replicas

Important notes:

• Changes to the pod template do not affect existing pods
• Changing the label selector makes the existing pods fall out of the scope of the
replicaset, so the controller stops caring about them

29



Replicaset

30



Example

apiVers ion : apps/v1
kind : Repl icaSet
metadata :
name : kubia

spec :
r ep l i c a s : 3
se lec to r :
matchLabels :
app : kubia

template :
metadata :
l abe l s :
app : kubia

spec :
conta iners :
− name : kubia
image : luksa/kubia

31



Label selector expressiveness

The label selector of a replicaset is composed of

• a key
• an operator
• the values to match

An operator can be

• In: value must match one of the specified values
• NotIn: value must not match any of the specified values
• Exists: the pod must include a label with the specified key (the value isn’t important
and should not be specified)

• DoesNotExist: the pod must not include a label with the specified key (the value isn’t
important and should not be specified)

32



Example

apiVers ion : apps/v1
kind : Repl icaSet
metadata :
name : kubia

spec :
r ep l i c a s : 3
se lec to r :
matchExpressions :
− key : app
operator : In
values :
− kubia

template :
. . .

33



Tutorial

Follow this tutorial

34

https://helene-coullon.fr/pages/ue-nuage-login-23-24/tuto-replicas/


Services and ingresses



Why services?

What is needed:

• Pods need ways to find other pods
• External clients need ways to contact applications hosted on pods

Problem:

• pods are ephemeral
• the IP address of a pod is known after being scheduled to a node
• horizontal scaling induces that multiple pods may provide the same app

Service
A Kubernetes Service is a resource you create to make a single and constant point of
entry to a group of pods providing the same service.

• each service has an IP address and port that never change while the service exists
• clients can open connections to that IP and port, connections are then routed to one
of the pods 35



Example

36



Example of code

apiVers ion : v1
kind : Serv i ce
metadata :
name : kubia

spec :
ports :
− port : 80
ta rge tPo r t : 8080

se lec to r :
app : kubia

• port is the port on which the service will be available
• targetPort is the port of the container, the service will forward to this port
• selector is the label selector to indicate which pods are concerned by this service

37



Make a service accessible externally

• type NodePort: each node of the cluster opens a port and redirects the traffic on that
port to the underlying service

• type LoadBalancer: makes the service accessible through a load balancer, the load
balancer redirects the traffic across all nodes

• Ingress resource: exposing multiple services through a single IP address

38



Why Ingress resource?

39



Example of code

apiVers ion : networking . k8s . io / v1
kind : Ingress
metadata :
name : kubia − ingress

spec :
ru les :
− host : kubia . example . com
http :
paths :
− path : /
pathType : P r e f i x
backend :
se r v i ce :
name : kubia − loadbalancer
port :
number : 80

Makes sure all HTTP requests received by the Ingress controller at kubia.example.com
at the path / will be sent to the kubia-loadbalancer service on port 80. 40



Tutorial

Follow this tutorial

41

https://helene-coullon.fr/pages/ue-nuage-login-23-24/tuto-services/


Volumes



Volumes in Kubernetes

Pods relies on containers, so as container images are immutable new data within
containers are lost when restarted.

Kubernetes volumes
Volumes are part of Pod’s definition to declare persistent storage.

The volumes declared in the manifest are accessible to all containers in the pod but have
to be mounted in the containers.

42



Many types of volumes

• emptyDir: Empty directory to store data (persistent at the container level, not at the
pods level)

• hostPath: mount a directory from the host worker node
• gitRepo: a volume initialized by cloning a git repository
• nfs: a NFS share is mounted
• cgePersistentDisk, awsElasticBlockStore, azureDisk: to mount specific a Cloud
provider-specific storage

• other types of network storage: cinder, cephfs etc.
• configMap, secret, downwardAPI: special types of volumes to expose Kubernetes
resources and cluster information to the pod

• etc.

Full list
43

https://kubernetes.io/fr/docs/concepts/storage/volumes/


Tutorial

Follow this tutorial

44

https://helene-coullon.fr/pages/ue-nuage-login-23-24/tuto-volumes/


Deployments



Updating pods with downtime

How to move an application from one version to another? The easiest way with downtime

(1) change the template in the replicaset resource, (2) manually delete pods, (3) let the
replicaset start new pods with the new version

45



Updating pods without downtime

Harder way without downtime, with high hardware cost: blue-green deployment

(1) create a second replicaset with the new version of pods, (2) change the label selector
of the service 46



Rolling update (without downtime)

Even harder way without downtime, less hardware cost

(1) change label selector of the service, (2) scale to 1 the second replicaset and -1 the first
replicaset, (3) etc.

Difficult and error prone process!

47



Deployments

Deployments automate all this for you!

48



Tutorial

Follow this tutorial

49

https://helene-coullon.fr/pages/ue-nuage-login-23-24/tuto-deployments/


Persistent volumes



Persistent volume claims

Problem
Volumes explored so far have required the pod developer to know the network storage
infrastructure available in the cluster.

This is not the philosophy of Kubernetes. For example, the developer does not have to
know the hardware of nodes.

50



Persistent volume claims

51



Dynamic allocation of persistent volumes

The problem with the above method is that the administrator needs to provision storage
in advance!

Dynamic allocation of PV - for administrators

• creates a PersistentVolume provisioner instead of a PV
• defines one or more StorageClass to let users choose the type of PV they want in
their PVC

PV provisioners are already available for popular Cloud providers!

There also are already existing StorageClass objects!

52



Dynamic PVC

53



Tutorial

Follow this tutorial

54

https://helene-coullon.fr/pages/ue-nuage-login-23-24/tuto-volumes/


Configuration Management



Rationale for Configuration Management

Real projects have hundreds or thousands objects, can be more than 100k lines of YAML.

But no mechanism for

• Parametrization
• Reuse, composition of manifests
• Generation with loops

In a word: no abstraction.

55



Helm: Package Manager for Kubernetes

• Template YAML
• Package manifests into ”charts”
• Simple sharing
• Manages releases, upgrades

helm install ...
helm upgrade ...
Example of Redis chart

56

https://bitnami.com/stack/redis/helm


Kustomize: Customizing Manifests Without Templating

• Plain YAML
• Customize Kubernetes objects
• Patch/Overlay approach
• Built into kubectl

Main usecase: variants of manifests for dif-
ferent environments.

namespace: dev
resources:
- ../../base
patches:
- path: deployment-dev.yaml
- path: service-dev.yaml

├── base
│ ├── deployment.yaml
│ ├── service.yaml
│ ├── kustomization.yaml
└ overlays

├── dev
│ ├── deployment-dev.yaml
| ├── service-dev.yaml
│ └── kustomization.yaml
└── prod

├── deployment-prod.yaml
├── service-prod.yaml
└── kustomization.yaml

57



Kustomize: Customizing Manifests Without Templating

• Plain YAML
• Customize Kubernetes objects
• Patch/Overlay approach
• Built into kubectl

Main usecase: variants of manifests for dif-
ferent environments.

namespace: dev
resources:
- ../../base
patches:
- path: deployment-dev.yaml
- path: service-dev.yaml

├── base
│ ├── deployment.yaml
│ ├── service.yaml
│ ├── kustomization.yaml
└ overlays

├── dev
│ ├── deployment-dev.yaml
| ├── service-dev.yaml
│ └── kustomization.yaml
└── prod

├── deployment-prod.yaml
├── service-prod.yaml
└── kustomization.yaml

57


	Why Kubernetes?
	Understanding a bit of internals
	An introduction of concepts through Pods
	Replicas and controllers
	Services and ingresses
	Volumes
	Deployments
	Persistent volumes
	Configuration Management

