
Terraform - Infrastructure-as-Code (IaC)
FIL A3 Cloud Computing

Eloi Perdereau, Hélène Coullon
https://helene-coullon.fr/pages/ue-terraform-23-24/

IMT Atlantique

https://helene-coullon.fr/pages/ue-terraform-23-24/


Table of contents

1. Introduction

2. Concepts of Terraform

3. Providers

4. Good practices

5. Your turn...

1



Introduction



Cloud computing - what you have seen so far

• Virtualization and hypervisors
• Foundation of the Cloud computing

• AWS
• One possible public Cloud provider

• OpenStack
• The open-source operating system of the Cloud
• Could be used for public and private Clouds

• OVH Cloud (public)
• IMT Atlantique (private)

2



What you have seen in the DevOps course

• Ansible: a configuration tool (Infrastructure as Code)
• Docker and docker-compose: containers
• Kubernetes: a containers orchestrator

3



DevOps (SRE) skills

Colors

• already known

• DevOps course

• This year

• What is not studied in FIL

1. Concepts of development
2. Operating systems
3. Networking and security
4. Containers
5. Automated CI/CD
6. Cloud providers
7. Containers orchestration
8. Monitoring
9. Infrastructure as Code
10. Scripting
11. Version control

4

https://www.youtube.com/watch?v=0yWAtQ6wYNM


Terraform

• This module is at the crossroads of Cloud computing and Infrastructure-as-Code
• Terraform is an IaC tool initially made to provision resources on Cloud providers

• Terraform is a provisioning tool (as Pulumi)
• Terraform is not a configuration tool (Ansible is)
• Terraform is not specific to containerized apps and systems (Docker, docker-compose and
Kubernetes are)

5



Advantages of Terraform

• Terraform can manage infrastructure on multiple Cloud platforms.
• The human-readable configuration language helps you write infrastructure code.
• Terraform’s state allows you to track resource changes throughout your deployments.
• You can commit your configurations to version control to collaborate safely.
• 1,000 providers to manage resources on Amazon Web Services (AWS), Azure, Google
Cloud Platform (GCP), etc.

• You can compose resources from different providers into reusable Terraform
configurations called modules.

• Terraform’s configuration language is declarative, meaning that it describes the
desired end-state for your infrastructure, not how to get it.

6



Why Terraform?

I can do that through the graphical interfaces of Cloud providers! Yes but...
• Long and error-prone manual procedures.
• Difficult and error-prone when collaborating.
• Not scalable.

I can do that with Cloud providers CLIs and scripts! Yes but...
• You have to know as many CLIs as the number of Cloud providers you are using.
• A script is less specialized and structured than IaC, more difficult to write/read and
maintain.

• You have to manually handle the state of your infrastructure which is difficult and
error prone.

7



Organization

1. A bit of theory to understand the language and the concepts properly
2. A tutorial to learn how to use Terraform from concrete examples
3. A project to learn how to search and find information to write Terraform codes

Evaluated skills

• CG2 project (by 2)

8



Concepts of Terraform



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.

• The order is defined when resources refer to each other.
• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

9



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.
• The order is defined when resources refer to each other.

• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

9



Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in .tf files.

• The order of provisioning is determined automatically.
• Terraform will create infrastructure in the right order.
• The order is defined when resources refer to each other.
• Changes in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

9



Basic Architecture

Resources
• A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.

• Providers furnish an API that lists
1. Available resource types.
2. For each of them their parameters.

Terraform Core
• Configuration : every .tf files⇒ resources declarations.
• The current directory constitutes the root module.
• State file : contains the current state of resources under Terraform’s management.
• Upon each CLI call, the state file is refreshed with the actual resources.

Terraform detects changes in the configuration and plan API calls accordingly.

10



Basic Architecture

Resources
• A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.

• Providers furnish an API that lists
1. Available resource types.
2. For each of them their parameters.

Terraform Core
• Configuration : every .tf files⇒ resources declarations.
• The current directory constitutes the root module.
• State file : contains the current state of resources under Terraform’s management.
• Upon each CLI call, the state file is refreshed with the actual resources.

Terraform detects changes in the configuration and plan API calls accordingly.

10



Basic Architecture

Resources
• A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.

• Providers furnish an API that lists
1. Available resource types.
2. For each of them their parameters.

Terraform Core
• Configuration : every .tf files⇒ resources declarations.
• The current directory constitutes the root module.
• State file : contains the current state of resources under Terraform’s management.
• Upon each CLI call, the state file is refreshed with the actual resources.

Terraform detects changes in the configuration and plan API calls accordingly.
10



Commands for different stages

terraform refresh
Updates the state file by querying the provider.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
‘.tf‘ configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

11



Commands for different stages

terraform refresh
Updates the state file by querying the provider.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
‘.tf‘ configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

11



Commands for different stages

terraform refresh
Updates the state file by querying the provider.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
‘.tf‘ configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

11



Commands for different stages

terraform refresh
Updates the state file by querying the provider.

terraform plan
Produce an execution plan with details on what to add/delete/change by comparing the
‘.tf‘ configurations and the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and execute it. A planned execution may fail if the provider doesn’t
agree with Terraform’s API calls.

terraform destroy
Calls the provider to deletes managed resources.

11



HCL Language Syntax (1): Attributes

aka ”argument”, ”parameter”, ”field”, ”property”, ”key-value pair”, ”entry”
Attributes are distinguished with the equal sign = meaning assignment.
The value can be any expressions: function calls, lists, objects, references, etc.

• credentials = file("./creds.json")
• labels = { app = "redis" }
• image = docker_image.myimage.name
• etc.

Multiple definitions of an identifier are forbidden. Attributes are single assignment.

In addition to arguments within a block, there are a few meta attributes that have special
semantics, e.g. the for_each attribute.

12



HCL Language Syntax (1): Attributes

aka ”argument”, ”parameter”, ”field”, ”property”, ”key-value pair”, ”entry”
Attributes are distinguished with the equal sign = meaning assignment.
The value can be any expressions: function calls, lists, objects, references, etc.

• credentials = file("./creds.json")
• labels = { app = "redis" }
• image = docker_image.myimage.name
• etc.

Multiple definitions of an identifier are forbidden. Attributes are single assignment.

In addition to arguments within a block, there are a few meta attributes that have special
semantics, e.g. the for_each attribute.

12



HCL Language Syntax (2): Blocks

Blocks
e.g. resource "docker_image" "redis" { ... }

• Have a key identifier: here resource. It has a meaning in the context where it is
defined

• String identifiers attached: here docker_image and redis.
• They can represent a type or name identifier in order to refer to them in another part
of the .tf configuration.

Block can have embedded blocks that, again, have meaning only in the context of the
current block. e.g. docker_image block can embed a build block.
Multiple embedded block with the same keyword are sometimes allowed. It usually
results in a list of objects.

13



HCL Language Syntax (2): Blocks

Blocks
e.g. resource "docker_image" "redis" { ... }

• Have a key identifier: here resource. It has a meaning in the context where it is
defined

• String identifiers attached: here docker_image and redis.
• They can represent a type or name identifier in order to refer to them in another part
of the .tf configuration.

Block can have embedded blocks that, again, have meaning only in the context of the
current block. e.g. docker_image block can embed a build block.

Multiple embedded block with the same keyword are sometimes allowed. It usually
results in a list of objects.

13



HCL Language Syntax (2): Blocks

Blocks
e.g. resource "docker_image" "redis" { ... }

• Have a key identifier: here resource. It has a meaning in the context where it is
defined

• String identifiers attached: here docker_image and redis.
• They can represent a type or name identifier in order to refer to them in another part
of the .tf configuration.

Block can have embedded blocks that, again, have meaning only in the context of the
current block. e.g. docker_image block can embed a build block.
Multiple embedded block with the same keyword are sometimes allowed. It usually
results in a list of objects.

13



Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• These are the main state declarations of resources managed by Terraform.

• The data block is for read-only resource.
• The provider block sets configuration parameters for a provider.

There are a few other top-level blocks, e.g. locals, module, etc.

14



Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• These are the main state declarations of resources managed by Terraform.
• The data block is for read-only resource.

• The provider block sets configuration parameters for a provider.

There are a few other top-level blocks, e.g. locals, module, etc.

14



Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the top-level.

resource, data, provider
The references for those blocks are found in the provider’s documentation at
https://registry.terraform.io/providers/.

• These are the main state declarations of resources managed by Terraform.
• The data block is for read-only resource.
• The provider block sets configuration parameters for a provider.

There are a few other top-level blocks, e.g. locals, module, etc.

14



Variables

User variables
The DevOps can declare three kinds of user variables: Input, Output, and Local.

They are declared in the variable, output, and locals blocks respectively.

Terraform’s keywords (on the RHS)
• Resources attributes are referenced with type and name of the resource, e.g.
docker_image.my-redis.image_id

• To reference a data source, we prefix the reference as above with data..
• For input and local variables, we use var.my-inputvar and local.my-localvar
• Terraform has other such special variable keywords, e.g. each and module.

15



Variables

User variables
The DevOps can declare three kinds of user variables: Input, Output, and Local.

They are declared in the variable, output, and locals blocks respectively.

Terraform’s keywords (on the RHS)
• Resources attributes are referenced with type and name of the resource, e.g.
docker_image.my-redis.image_id

• To reference a data source, we prefix the reference as above with data..
• For input and local variables, we use var.my-inputvar and local.my-localvar
• Terraform has other such special variable keywords, e.g. each and module.

15



Providers



Provider registry

16



Good practices



Good practices

Objective: avoid troubleshooting

• Read and understand carefully each declarations and plan.
• Version control your Terraform codes. Beware not to commit secrets.
• CI/CD on your Terraform infrastructure.
• Store the Terraform state files on remote storages with lock mechanisms.

17



Your turn...



18


	Introduction
	Concepts of Terraform
	Providers
	Good practices
	Your turn...

