Terraform - Infrastructure-as-Code (laC)

4. nd

IMT Atlantique
Bretagne-Pays de la Loire
Ecole Mines-Télécom

Eloi Perdereau, Héléne Coullon
https://helene-coullon.fr/pages/ue-terraform-25-26/

IMT Atlantique

https://helene-coullon.fr/pages/ue-terraform-25-26/

Table of contents

1. Introduction
2. Concepts Terraform
3. Good practices

4. Your turn...

Introduction

DevOps

DevOps practices tries to reduce the time of release cycles, make more flexible (agile)
software development etc., by bridging the gap between development and operation

sosana @PivotalTracker

shippable
e oo o Lucidchar 32

Towdock . €% +planio . Q’E“‘“““ “m &Trawscw ") o ~‘

- ot bud
Wrike Y

¥ ot = < split Orans

@owor | i
Lrlifty .. ¥ puppet (IEEF
i Basecamp
rackspace
@ellr ot =
s vicrosot Tears

@ opsGenie *
__ pagerduty
Bluejeans 4% slack
O NewRelic ff snyk

matters
* zoominfo

AN CODE CLIMATE

it :-VH

&
%

#
o
iy, 5
Ol pemon I

wbugsnag Nagios™

””‘é Girra — OSCEAT ey RO
= @FitNesse " estFalry
& nede mzendesk @Jusmme &) senTRY W
Kl b wrnetes dlxl:w GitHub Se‘ Ppr—
7PHYR cucumher riRollbar
ﬁ«"‘?‘“&m & Sonatype @ @ Browsecsnck () o tes
Sl @lreshdesk GuETRY Goasymphony 5 OMN [:)SaurceCleac LogicAaonitor

Relationship between DevOps and Cloud computing?

Lots of applications are now migrated to micro-serivces architectures and are deployed in
the Cloud because

- servers are operated by a tiers

- companies pay only what they consume

- easy elasticity

- etc.

— DevOps cycles very often integrate Cloud operations.

Infrastructures = APIs

The Cloud computing paradigm has transformed infrastructure (also platforms and
software) to external APIs to request.

Nowadays infrastructures are like any piece of software offering services.

- request for a bucket to store content,
- request for a GKE cluster to host micro-services applications,
- request for VMs to install databases or larger software,

- etc.

Example

) Google Cloud Platform

Cloud Storage
Static content

Zone A Instance group Zone A Instance group
— — —=
Compute Engine Compute Engine
Web server Application server
Cloud DNS Cloud CDN
Autoscaler Autoscaler
Cloud Load . Cloud Load
balancing Zone B Instance group balancing Zone B Instance group
L — L
Compute Engine Compute Engine
Web server Web server

What is Infrastructure-as-Code?

Infrastructure-as-Code (laC)

- Avoid manual or ad-hoc way of handling (create, update, delete) complex
infrastructures,

- see infrastructure management as codes that can be shared, versioned, automated
etc..

Associated concepts

- imperative/declarative

- idempotence

Different types of Infrastructure-as-Code

Originally made to automate and make more reusable and flexible the configuration of
servers, machines, virtual machines

Puppet
Chef
Ansible

Different types of Infrastructure-as-Code

Originally made to automate and make more reusable, flexible and safe the
management of Cloud infrastructures

Heat (OpenStack)
Cloud Formation (AWS)

Terraform

Pulumi

Different types of Infrastructure-as-Code

Made to orchestrate the lifespans of a large set of containers and their deployment on
servers

Dockerswarm

Kubernetes

Nomad

Provisioning

In this module we focus on one declarative provisioning tool: terraform

2
Hi

- state: the current state of the infrasturcture and the desired state specified by the
user. Both can change over time.

- reconciliation: declarative laC provisioning tools try to reconcile the current state
with the desired state.

- plan: to reconcile, declarative laC tools automatically generate a plan to
execute/apply.

Why using a provisioning tool?

I can do that through the graphical interfaces of Cloud providers! Yes but...
- Long and error-prone manual procedures.
- Difficult and error-prone when collaborating.
- No clear/central vision of the state of your infrastructure.
- Not scalable.

| can do that with Cloud providers CLIs and scripts! Yes but...

- You have to know as many CLIs as the number of Cloud providers you are using.

- A script is less specialized and structured than laC, more difficult to write/read and
maintain.

- You have to manually handle the state of your infrastructure which is difficult and
error prone.

1

Other Provisioning laC Tools

Specific to Cloud Providers

- CloudFormation: Typescript classes for AWS
- Azure Resource Manager (ARM): custom DSL for Azure
- Heat: YAML templates for OpenStack

Comparatively, Terraform can handle all cloud providers within a single state file.
Pulumi
- Competitor of Terraform. Same purposes.

- Reuses Terraform providers
- Agnostic of the Language: DevOps can use Python, NodeJS, .NET, Go or YAML

Concepts Terraform

Concepts of Terraform

Google Cloud openstack

(Providers W

* Schema for Resources, data sources and
provider credential
¢ Implementation CRUD API calls

@ Kubernetes Engl.. Gateways, Sevices & Ingress

o e oare

ook Clowd |t wtotematorm + Search () for e

courceManagoment ~

Q Search + 0O

e

(Users

¢ HCL Resources and Providers configuration
¢ CLI commands
¢ Managed State

google_compute_instance

tvm. tf

resource "google_compute_instance" "vm" {

}

name = "redis"
machine_type = "e2-medium"
network_interface {

network = var.network-name

}

Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in . tf files.

- The of provisioning is determined automatically.

- Terraform will infrastructure in the right order.

14

Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in . tf files.

- The of provisioning is determined automatically.
- Terraform will infrastructure in the right order.

- The order is defined when resources to each other.

14

Automatic ordering

Declarative state : declare what not how
The desired state is written by the DevOps in . tf files.

- The of provisioning is determined automatically.
- Terraform will infrastructure in the right order.
- The order is defined when resources to each other.
in the declared state are compared against the state file.

We can create multiple versions of the same replicated infrastructure (e.g. dev, prod).

14

Basic Architecture

Resources
- A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.
- Providers furnish an API that lists

1. Available resource
2. For each of them their

Basic Architecture

Resources

- A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.
- Providers furnish an API that lists

1. Available resource
2. For each of them their

Terraform Core
- Configuration : every . tf files = provider and resource declarations.
- The current directory constitutes the
- State file : contains the of resources under Terraform’s management.
- Upon each CLI call, the state file is with the actual resources.

Basic Architecture

Resources

- A resource can represent anything. e.g. VM, docker image, virtual network, ip, user,
account, role, etc.
- Providers furnish an API that lists

1. Available resource
2. For each of them their

Terraform Core
- Configuration : every . tf files = provider and resource declarations.
- The current directory constitutes the
- State file : contains the of resources under Terraform’s management.
- Upon each CLI call, the state file is with the actual resources.

Terraform detects changes in the configuration and API calls accordingly.

Terraform Workflow Illustration

[[User Configuration]

(,
vm.tf (HCL format)

terraform {
required_providers {

google = {
source = "hashicorp/google"
version = "5.6.0"
}
}

}
provider "google" {
project = var.gcp_project_id
region = var.gcp_region
credentials = file(var.gcp_key)

resource '"google_compute_instance" "vm"
{
name = "redis"
machine_type = "e2-medium"
network_interface {
network = "default"

Distant API \{ Terraform Managed State J]
~
n ‘* < # terraform.tfstate (JSON format)
resource '"google_compute_instance"
) "vm" {
' | name = "redis"
; CREATE : id = "projects/tf-80/..."
H READ ! instance_id = "3012364625718931000"
: UPDATE : network_interface {
. ! name = "nico"
: DELETE ; network =
! ¢ "https://www.googleapis.com/compute"
; network_ip = "10.162.0.20"
T }
; refrest
i 1 }
v plan !
init apply b

Commands for different stages

terraform init
Initialize the working directory by downloading providers and modules.

Commands for different stages

terraform init
the working directory by providers and modules.

terraform plan

Produce an execution with details on which resources to
create/update/replace/delete by "compiling” the . tf configuration and comparing it
with the state file.

Plans can be stored to be applied in the future.

Commands for different stages

terraform init
the working directory by providers and modules.

terraform plan

Produce an execution with details on which resources to
create/update/replace/delete by "compiling” the . tf configuration and comparing it
with the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and it. An execution may fail depending on the provider’s
implementation and hidden infrastructure constraints.

Commands for different stages

terraform init
the working directory by providers and modules.

terraform plan

Produce an execution with details on which resources to
create/update/replace/delete by "compiling” the . tf configuration and comparing it
with the state file.

Plans can be stored to be applied in the future.

terraform apply
Produce a plan and it. An execution may fail depending on the provider’s
implementation and hidden infrastructure constraints.

terraform destroy
Calls the provider to

HCL Language Syntax (1): Attributes

aka “argument”, “field”
Attributes are distinguished with the sign = meaning assignment.

The value can be any expressions: function calls, lists, objects, references, etc.

- name = "redis server"

- credentials = file("./creds.json")
- labels = { app = "redis" }

- image = docker_image.redis.name

- etc.

HCL Language Syntax (1): Attributes

aka “argument”, “field”
Attributes are distinguished with the sign = meaning assignment.

The value can be any expressions: function calls, lists, objects, references, etc.

- name = "redis server"

- credentials = file("./creds.json")
- labels = { app = "redis" }

- image = docker_image.redis.name

- etc.

definitions of an attribute are . They are single assignment.

In addition to arguments within a block, there are a few that have special
semantics: count, for_each and depends_on and lifecycle.

HCL Language Syntax (2): Blocks

Blocks
eg resource "docker_image" "redis" { ... }

- Have a mandatory identifier, here resource. It have a meaning in the context

where it is defined, like standard attributes.
- Strings can be attached, here docker_image and redis.

- They can be from another part of the configuration.

19

HCL Language Syntax (2): Blocks

Blocks
eg resource "docker_image" "redis" { ... }

- Have a mandatory identifier, here resource. It have a meaning in the context

where it is defined, like standard attributes.
- Strings can be attached, here docker_image and redis.

- They can be from another part of the configuration.

Block can be . e.g. in a container resource:
mounts { volume_options { no_copy = true }}

19

HCL Language Syntax (2): Blocks

Blocks
eg resource "docker_image" "redis" { ... }

- Have a mandatory identifier, here resource. It have a meaning in the context

where it is defined, like standard attributes.
- Strings can be attached, here docker_image and redis.
- They can be from another part of the configuration.
Block can be . e.g. in a container resource:

mounts { volume_options { no_copy = true }}

blocks with identical keyword are and results in an of objects. e.g.

to refer to a particular mount option:
mounts[0].volume_options[@].no_copy
19

Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the

resource, data, provider and variables

The references for those blocks are found in the provider's documentation at
https://registry.terraform.io/providers/.

- The resource block is the main state declarations of

20

Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the

resource, data, provider and variables

The references for those blocks are found in the provider's documentation at
https://registry.terraform.io/providers/.

- The resource block is the main state declarations of
- The data block is for resource.

20

Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the

resource, data, provider and variables

The references for those blocks are found in the provider's documentation at
https://registry.terraform.io/providers/.

- The resource block is the main state declarations of
- The data block is for resource.

- The provider block sets configuration parameters for a provider.

20

Kinds of top-level blocks

Terraform has concepts for each kind of block that can be declared at the

resource, data, provider and variables

The references for those blocks are found in the provider's documentation at
https://registry.terraform.io/providers/.

- The resource block is the main state declarations of
- The data block is for resource.
- The provider block sets configuration parameters for a provider.

- variable blocks for input values set from of . tf files.

There are a few other top-level blocks, e.g. module, check, import.

20

Variables and References

Variables

There is three kinds of user variables depending on how we use them:
Inputs, Outputs, and Locals.

Declared with the variable, output, and locals top-level blocks respectively.

21

Variables and References

Variables

There is of user variables depending on how we them:

Inputs, Outputs, and Locals.

Declared with the variable, output, and locals top-level blocks respectively.

References to resources, data sources and variables

- Resources attributes are referenced with and of the resource, e.g.
docker_image.redis.image_id

- To reference a data source, we use the keyword ,eg.
data.docker_image.redis.image_1id.

- For input and local variables, we use and keywords, e.g.
var.my_input_var
local.my_local_var

- Terraform has other such special variable keywords, e.g. module, each, path.
21

Good practices

Good practices

Objective: avoid troubleshooting

- Read and understand carefully each declarations and plan.

- Version control your Terraform codes. Beware not to commit secrets.

- CI/CD on your Terraform infrastructure.

- Store the Terraform state files on remote storages with lock mechanisms.

22

Your turn...

Your turn!

- Tutorial with the Docker provider

- TF calls the local Docker CLI
- Tutorial with the Kubernetes provider

- TF calls a distant Kubernetes CLI (through kubect1)
- Project (2 students)

- Deploy the same App as in FILA2
- Use Terraform to deploy with

- Docker only

- Kubernetes only

- Kubernetes + Proxmox for Redis

23

	Introduction
	Concepts Terraform
	Good practices
	Your turn...

