
DevOps deployment tools - Behind the scene
Advanced distributed systems

Hélène Coullon

Associate professor at IMT Atlantique, France

Inria researcher, France

Adjunct professor at UiT, Tromsø, Norway

March 1st, 2021

1 / 54

Outline

1. Introduction

2. Overview of deployment tools

3. Parallelism within deployments

4. The Madeus deployment model

5. Evaluation

6. Conclusion

2 / 54

Let’s start with a few questions on Wooclap

3 / 54

Table of Contents

1. Introduction

2. Overview of deployment tools

3. Parallelism within deployments

4. The Madeus deployment model

5. Evaluation

6. Conclusion

4 / 54

Distributed software systems

General definition
• Non monolithic code,
• modular units of code - components,

• black-box of code,
• with well-defined provided and required interfaces,

• software system = architectural assembly of component instances,

• interactions between components through communications.

• Master/workers,

• peer-to-peer,

• dataflow/stream,

• service-oriented,

• layered.

5 / 54

Distributed software systems everywhere

Examples of distributed software systems

• Smartphone applications (e.g., Waze),

• health, bank, tax information systems,

• Netflix micro-services infrastructure (i.e., Netflix OSS),

• operating system of the Cloud (e.g., OpenStack),

• 5G networks (e.g., network function virtualization).

6 / 54

Distributed infrastructures

Computing, storage and network resources everywhere!

• Cloud computing

• Fog and Edge computing

• Internet-of-Things (IoT)

• Cyber-physical systems

7 / 54

Deployment

What is a deployment?

Install, configure, start, test a distributed software system.

Questions raised by deployment

• What do I need to deploy?

• Where do I need to deploy?

• How do I deploy?

• When do I deploy?

[WHAT + HOW + WHERE + WHEN] = DevOps deployment tools

8 / 54

Example - deploying LAMP

[WHAT] LAMP

• Linux operating system

• Apache web server

• MariaDB database

• PHP language

[WHERE]

on 2 nodes: machine1, machine2

9 / 54

Example - deploying LAMP

[HOW]

• Let’s take a look at a basic documentation

• What if I want to configure Apache and MariaDB?

• What if I deploy on CentOS?

[WHEN]

linux → apache → mariadb → php

linux → mariadb → apache → php

linux → apache → php → mariadb

Not so simple?

10 / 54

https://www.digitalocean.com/community/tutorials/how-to-install-linux-apache-mariadb-php-lamp-stack-debian9
https://httpd.apache.org/docs/2.4/en/configuring.html
https://mariadb.com/kb/en/configuring-mariadb-with-option-files/
https://www.tecmint.com/install-lamp-on-centos-8/

What about this?

11 / 54

Or this?

12 / 54

On this?

13 / 54

Deployment tools and DevOps community

documentation or README.md −→ ad-hoc scripts −→ deployment tools

Software engineering practices applied to deployment

• Automating deployments at scale,

• structuring deployments (languages, models),

• reusing deployment procedures,

• avoiding errors.

14 / 54

Table of Contents

1. Introduction

2. Overview of deployment tools

3. Parallelism within deployments

4. The Madeus deployment model

5. Evaluation

6. Conclusion

15 / 54

Overview of deployment tools

Config Management Docker ecosystem Provisioning Orchestration

Ansible (2012) X (X)
Puppet (2005) X (X)
Docker Compose (2014) X
Docker Swarm (2014) X X
Kubernetes (2014) X X
Nomad (v1.0) X
Terraform (2014) (X) X
Juju (2011) X X
Cloud Formation (2006) X
HOT and Heat (2010) X X
Tosca ecosystem (2014) X (X) X X

Archiecture of these tools

Agentless, master/workers and heavier software stack (i.e., bootstrap problem).

In practice - combination of tools
16 / 54

https://blog.gruntwork.io/why-we-use-terraform-and-not-chef-puppet-ansible-saltstack-or-cloudformation-7989dad2865c

4 categories

Configuration management tools

Initially designed to install, configure, manage software on existing servers.

Provisioning tools

Initially designed to provision the servers, network, platforms etc.

Docker ecosystem

Solve portability problem and reduce configuration issues through containers.

Orchestration tools

Automated coordination, and management of a set of components that form distributed
software systems, on a set of resources (virtual or physical).

17 / 54

Decoupling WHAT / HOW / WHERE / WHEN

Machine 1 [WHERE]

Database (DB) [WHAT]

[HOW]

1. install prerequisite 1

2. install prerequisite 2

3. install MySQL

4. configure parameters

5. start the service

6. setup the root user

7. add a user

8. create table

Machine 2 [WHERE]

Web-server (WS) [WHAT]

[HOW]

1. install prerequisite 1

2. install prerequisite 2

3. install Apache

4. configure the firewall

5. restart the firewall

6. download the website content

7. untar the website content

8. configure parameters

9. start the service

[WHEN]: DB → WS (components granularity)

18 / 54

Academic contributions

Enhancing [WHEN]

• enhancing [WHEN] by decoupling
• [LIFECYCLE]
• [DEPENDENCIES]

Contributions

Tosca, Deployware, SmartFrog, Engage, Aeolus, Madeus etc.

SmartFrog (1996-2003-2009)→ Engage (2012)→ Aeolus (2013-2016)→ Madeus (2018-2021)

• comparable but complementary to configuration management tools

• generic to any kind of resource and action (configuration, provisioning, management)

19 / 54

Decoupling WHAT / HOW / WHERE / WHEN

<< use >>

Web
Server

Database

Machine 1 [WHERE]

Database (DB) [WHAT]

[HOW] [LIFECYCLE]

1. Install

2. Configure

3. Start the service

4. Prepare the service

Machine 2 [WHERE]

Web-server (WS) [WHAT]

[HOW] [LIFECYCLE]

1. Install

2. Configure firewall

3. Download

4. Configure parameters

5. Start the service

[DEPENDENCIES]: WS(4) → DB(3), WS(5) → DB(4) (lifeycle granularity)
20 / 54

Engage

21 / 54

Aeolus

Particularities of Aeolus
• programmable lifecycle

• finer grain to model dependencies

• inspired from state machines

• inspired from component models

22 / 54

Table of Contents

1. Introduction

2. Overview of deployment tools

3. Parallelism within deployments

4. The Madeus deployment model

5. Evaluation

6. Conclusion

23 / 54

Our goals

Performance related to [WHEN] ≡ [LIFECYCLE, DEPENDENCIES]

• structured parallelism

• reach quickly a configuration

• avoid disruption time

Safety

• formally-defined semantics

• tools to assist during design

• verification of properties

24 / 54

Performance through parallelism and dependencies

level1: multiple nodes, same action

• no dependencies declared

• procedural execution order

• Ansible
A

B

C C

a1

a2

a3

b1

b2

b3

b4

b5

c1

c2

c3

c1

c2

c3

Node 1 Node 2

Node Y

Node X

25 / 54

Performance through parallelism and dependencies

level2: level1+non-dependent components

• dependencies at the component level

• Deployware, (basic) Tosca, Engage

A

B C C

a1

a2

a3

b1

b2

b3

b4

b5

c1

c2

c3

c1

c2

c3

Node 1 Node 2Node Y

Node X

26 / 54

Performance through parallelism and dependencies

level3: level1 + level2 + inter-component

• dependencies at the task level

• (advanced) Tosca, Aeolus

A

B C C

wait

c1

c2

c3

c1

c2

c3

b1

b2

b3

b4

b5

a1

a2

a3

Node 1 Node 2

Node X Node Y

27 / 54

Performance through parallelism and dependencies

level 4: level1 + level2 + level3 + intra-component

• internal task dependencies

• Madeus

A B C C

wait

a1

a2

a3

b1

b2

b3 b4 b5

c1

c2

c3

c1

c2

c3

Node X Node Y

Node 1 Node 2

The finer the dependencies granularity is, the better is the efficiency (related to [WHEN])

28 / 54

Table of Contents

1. Introduction

2. Overview of deployment tools

3. Parallelism within deployments

4. The Madeus deployment model

5. Evaluation

6. Conclusion

29 / 54

Control components

y Written by the component developers

server: Apache

uninstalled

database_ip

database

running

installed

configured

service

Internal net [LIFECYCLE]

• places = milestones
• transitions = actions to perform

• concretely: scripts are attached to transitions
• in the model: exact nature/effects of actions not

represented, only coordination

Interfaces [DEPENDENCIES]

• use ports = requirements

• provide ports = provisions

• during execution: active/inactive
30 / 54

Control components in practice

y Written by the component developers

1 c l a s s Apache (Component) :
2 d e f c r e a t e (s e l f) :
3 s e l f . p l a c e s = [’ u n i n s t a l l e d ’ , ’ i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , ’ r u n n i n g ’]
4

5 s e l f . i n i t i a l p l a c e = ’ u n i n s t a l l e d ’
6

7 s e l f . t r a n s i t i o n s = {
8 ’ i n s t a l l 1 ’ : (’ u n i n s t a l l e d ’ , ’ i n s t a l l e d ’ , s e l f . i n s t a l l 1) ,
9 ’ i n s t a l l 2 ’ : (’ u n i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , s e l f . i n s t a l l 2) ,

10 ’ c o n f i g u r e ’ : (’ i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , s e l f . c o n f i g u r e) ,
11 ’ s t a r t ’ : (’ c o n f i g u r e d ’ , ’ r u n n i n g ’ , s e l f . s t a r t)
12 }

31 / 54

Control components in practice

y Written by the component developers

1 c l a s s Apache (Component) :
2 d e f c r e a t e (s e l f) :
3 . . .
4

5 s e l f . d e p e n d e n c i e s = {
6 ’ d a t a b a s e i p ’ : (DepType . USE , [’ i n s t a l l e d ’ , ’ c o n f i g u r e d ’ , ’ r u n n i n g ’]) ,
7 ’ d a t a b a s e ’ : (DepType . USE , [’ r u n n i n g ’]) ,
8 ’ s e r v i c e ’ : (DepType . PROVIDE , [’ r u n n i n g ’])
9 }

10

11 # D e f i n i t i o n o f t h e a c t i o n s
12 d e f i n s t a l l 1 (s e l f) :
13 remote = SSHCl ient ()
14 remote . c o n n e c t (host , use r , pwd)
15 remote . exec command (cmd)
16 . . .

32 / 54

Assembly of components

Assembly of components [DEPENDENCIES]

instantiation of component types and connections of ports

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

33 / 54

Assembly of components in pratice

y Written by the assembly developers, architect, DevOps

1 from components . mar iadb i m p o r t MariaDB
2 from components . apache i m p o r t Apache
3

4 c l a s s ApacheWithDB (MadeusAssembly) :
5 d e f c r e a t e () :
6 s e l f . components = {
7 ’ s e r v e r ’ : Apache () ,
8 ’ db ’ : MariaDB ()
9 }

10 s e l f . d e p e n d e n c i e s = [
11 (’ s e r v e r ’ , ’ d a t a b a s e i p ’ , ’ db ’ , ’ i p ’) ,
12 (’ s e r v e r ’ , ’ d a t a b a s e ’ , ’ db ’ , ’ s e r v ’)
13]
14

15 i f n a m e == ’ m a i n ’ :
16 a s s e m b l y = ApacheWithDB ()
17 a s s e m b l y . run () 34 / 54

Execution example

Execution semantics

Initial places

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

35 / 54

Execution example

Execution semantics

Firing transitions, parallel transitions

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

36 / 54

Execution example

Execution semantics

Entering places, inter-coordination through connections

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

37 / 54

Execution example

Execution semantics

Reaching places, inter-coordination through connections

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

38 / 54

Execution example

Execution semantics

Reaching places, inter-coordination through connections

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

39 / 54

Execution example

Execution semantics

Reaching places, intra-coordination

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

40 / 54

Execution example

Execution semantics

Reaching places, intra-coordination

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

41 / 54

Execution example

Execution semantics

Reaching places, intra-coordination

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

42 / 54

Execution example

Execution semantics

Reaching places, inter-coordination through connections

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

43 / 54

Execution example

Execution semantics

Reaching places, inter-coordination through connections

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

44 / 54

Execution example

Execution semantics

Reaching places, inter-coordination through connections

server: Apache

uninstalled

service

database_ip

database

running

installed

configured

running

allocated

undeployed

ip

db: MariaDB

service

45 / 54

Table of Contents

1. Introduction

2. Overview of deployment tools

3. Parallelism within deployments

4. The Madeus deployment model

5. Evaluation

6. Conclusion

46 / 54

Use-case - deployment of OpenStack

Basic production OpenStack as defined in Kolla-Ansible:
• 11 components, 36 services in total, deployed on three nodes,
• Docker container-based deployment,
• combination of Docker images, Ansible,
• more than 20 minutes to deploy.

47 / 54

Evaluation setup

• Comparison to Kolla-Ansible (production tool), and Aeolus (literature),

• emulation of Aeolus (no longer maintained) with Madeus,

• three different versions of the deployment remote, local, cached,

• Reproducible experiments on Grid’5000.

48 / 54

https://gitlab.inria.fr/VeRDi-project/madeus-journal

Evaluation on the deployment of OpenStack

Results on three nodes Ecotype (Nantes) of Grid’5000

Cluster CPU Memory Network

Nantes 2× Intel Xeon E5-2630L 128GB 2×
Ecotype v4, 10 cores/CPU 10Gbps

49 / 54

Evaluation on the deployment of OpenStack

Madeus

Ansible

Aeolus

50 / 54

Evaluation on the deployment of OpenStack

• Traces of the OpenStack continuous Integration platform

• February 19 to February 27 2020

• Exactly 2963 deployments of OpenStack have been recorded (329 runs per day)

• Projection of the gain with deployment times of our experiments in remote mode

Kolla Madeus gain

reference time(s) 529 150 71%
projection on 9 days(h) 435 123 71%
projection on av./day(h) 48 14 71%

51 / 54

Table of Contents

1. Introduction

2. Overview of deployment tools

3. Parallelism within deployments

4. The Madeus deployment model

5. Evaluation

6. Conclusion

52 / 54

Conclusion

• Deployment problem and its complexity

• Need for software engineering practices

• Overview of deployment tools and academic contributions

• Presentation of Madeus

• Evaluation of Madeus

53 / 54

Questions?

54 / 54

Configuration management

Focus of configuration management tools

Initially designed to install, configure, manage software on existing servers.

• Ansible: Procedural approach, agentless on top of SSH
• sequential order of roles and tasks
• similar to a well structured script
• abstraction on top of SSH and system commands

• Puppet: Declarative approach with a master/worker architecture
• [HOW] is mostly hidden for the user
• specify what you want not how to get it
• interesting for management

Ansible [WHERE]

Inventory file

Ansible [WHAT]

Playbook, roles, vars

Ansible [HOW]

Tasks, templates, vars, handlers

Example of Ansible Apache role on GitHub.
55 / 54

https://github.com/geerlingguy/ansible-role-apache

Provisioning

Focus of provisioning tools

Initially designed to provision the servers, network, platforms etc.

• Cloud Formation and Heat: Specific to a given Cloud provider
• resp. AWS, OpenStack

• Terraform, Juju, and Tosca: Generic to any provider
• write your own providers

Terraform [WHAT]

resources, variables

Terraform [WHERE]

resources (provisioning)

Terraform [HOW]

variables, user data, local exec,
write custom providers

Example of an AWS EC2 instance provisioning with a webserver with Terraform
Writing custom Terraform providers
Combining Ansible and Terraform
Doing provisioning with Ansible

56 / 54

https://www.thedevcoach.co.uk/aws-ec2-instance-apache-terraform/
https://www.hashicorp.com/blog/writing-custom-terraform-providers
https://tutorials.releaseworksacademy.com/learn/using-ansible-with-terraform
https://medium.com/@chiragchaudhuri02/deploy-web-server-on-aws-ec2-instance-using-ansible-bb0f5db74be7

Docker ecosystem

Focus of configuration management tools

Solve portability problem and reduce configuration issues through containers.

Docker [HOW]

DockerFile and
Docker images

Docker [WHAT]

Docker images and
Docker Compose

Docker [WHERE]

Kubernetes and
Docker Swarm

• lighter than virtual machines (if sharing the same OS kernel)

• the DockerFile still has to be written at some point

• Docker Compose to write an ordered list of Docker images to deploy locally

• Kubernetes and Docker Swarm to manage set of containers, their placement, their
replicas

Example of Docker Compose LAMP deployment on GitHub.
57 / 54

https://github.com/sprintcube/docker-compose-lamp

	Introduction
	Overview of deployment tools
	Parallelism within deployments
	The Madeus deployment model
	Evaluation
	Conclusion
	Appendix

