
Fast Choreography of Cross-DevOps Reconfiguration with
Ballet
Multi-Site OpenStack Case Study

Jolan Philippe, Hélène Coullon, Antoine Omond, Charles Prud’Homme, Issam Räıs
December 13th, 2023

STACK, IMT Atlantique
SeMaFoR project

1

Motivation

• When facing complex projects: cross-functional and cross-geographical DevOps teams
• Each team tackles a set of services and associated DevOps operations on different parts of

the project
• Each team usually use a centralized local DevOps tool with a local vision of the state of

their part
Problem
DevOps operations applied by one DevOps team can necessitate operations on other elements
tackled by other DevOps teams. This is in practice handle manually between teams as
DevOps tools apply operations in a centralized manner.

Naive solution
Using a centralized tool on top of all DevOps teams is not suitable for scale and fault
tolerance reasons.

Related work: Muse (Sokolowski et. al.)
We want to improve performances and later introduce formal aspects for reasoning 2

Case study: Deploy or update OpenStack with Galera cluster of MariaDB

mariadb_master

common

haproxy mariadb_worker

common

haproxy

master

mariadb

keystone

glance

nova

neutron

mariadb

keystone

keystone

mariadb
keystone

mariadb

mariadb_worker

Master node

Worker node 1 Neutron node 1

Nova node 1

Site 1
Site n
Worker node n, Nova node n,
Neutron node n

Figure 1: Assembly of a multi-site OpenStack with a Galera cluster of distributed MariaDB databases.

3

Ballet overview

Front Front

Gateway Gateway Gateway

Planner Planner Planner

Executor Executor Executor

DevOps DevOps♂♀

goals goals goals

assembly;
inventory;

local goals

assembly;
inventory;

local goals

RP1 RPi RPj

Node1 Nodei Nodej
Figure 2: Ballet overview

• Declarative input
• Automatic planning
• Efficient reconfiguration

Gateway
Global knowledge building of
reconfiguration goals

Planner
Decentralized inference of
reconfiguration plans (RPs)

Executor
Coordinated execution of RP

4

Ballet overview

Front Front

Gateway Gateway Gateway

Planner Planner Planner

Executor Executor Executor

DevOps DevOps♂♀

goals goals goals

assembly;
inventory;

local goals

assembly;
inventory;

local goals

avoided

RP1 RPi RPj

Node1 Nodei Nodej
Figure 3: Decentralization in Ballet 5

Running Ballet

Front Front

Gateway Gateway Gateway

Planner Planner Planner

Executor Executor Executor

DevOps DevOps♂♀

goals goals goals

assembly;
inventory;

local goals

assembly;
inventory;

local goals

RP1 RPi RPj

Node1 Nodei Nodej

1

2

3

4

Figure 4: Decentralization in Ballet 6

Outline

Front Front

Gateway Gateway Gateway

Planner Planner Planner

Executor Executor Executor

DevOps DevOps♂♀

goals goals goals

assembly;
inventory;

local goals

assembly;
inventory;

local goals

RP1 RPi RPj

Node1 Nodei Nodej

1 Usage

3 Planning

2 Executing

7

Usage of Ballet

Ballet’s usage: Developer’s concern

• Specify components’
life-cycle (places,
transitions, ports)

• Defining components’
dependencies

ñ Scripts for
deployment or update

initiated

configured

restarted

registered

mdbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

initiated

configured

restarted

registered

mdbworker0:MariaDB_worker

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

master

common

haproxy

common

haproxy

bootstrapped bootstrapped

Figure 5: MariaDB Master and MariaDB Worker components 8

Ballet’s usage: DevOps’s concern

Listing 1: Language to define reconfiguration goals
for DevOps usage

<goa l s> ::“ b e h a v i o r s : <b h v r l i s t >
p o r t s : <p o r t l i s t >
components : <c o m p l i s t>

<b h v r l i s t > ::“ . . .
<bhvr i t em> ::“ − f o r a l l : <bhvr name>

| − component : <comp name>
be ha v i o r : <bhvr name>

<p o r t l i s t > ::“ . . .
<p o r t i t e m> ::“ − f o r a l l : <p o r t s t a t u s >

| − component : <comp name>
por t : <port name>
s t a t u s : <p o r t s t a t u s >

<c o m p l i s t> ::“ . . .
<comp item> ::“ − f o r a l l : <comp status>

| − component : <comp name>
s t a t u s : <comp status>

Language
Declarative language for defining
reconfiguration goals
• Behavior goal: Specify a behavior that

must be executed

• Port goal: Specify a port status (active,
inactive)

• State goal: Specify a component state
(specific, running, initial)

Case study reconfiguration
behaviors:

- component: mariadb master
behavior: update

components:
- forall: running 9

Ballet choreography engine

Execution language: Concerto-D (Antoine Omond’s thesis)

Reconfiguration programs are plans which can

1. Create assemblies of components (software system)
2. Make this assembly evolve at runtime
3. Interact with the life cycle of components

The used language propose instructions for:

Add/remove a component instance to the current assembly
Connect/disconnect two component instances with compatible ports
Push behavior to the behavior queue on a component instance
Wait for a given component instance to execute a behavior

10

Reconfiguration of Service oriented architecture

Reconf.
plan:
action1

action2

...
actionn

Initial
state

Final
state

action1 action2 ... actionn

Objectives

ñ Infer reconfiguration local actions
ñ Coherent overall reconfiguration

Challenges

• Locally: Partial view of the system
• Need for communications decentralized operation

Reconfiguration
Plan 1

Reconfiguration
Plan 2

Reconfiguration
Plan N

...

C
om

m
unications

11

Decentralized execution: Concerto-D

mariadb master’s RP

pushB(master, interrupt)
pushB(master, update)
pushB(master, deploy)

mariadb worker0’s RP

pushB(worker, interrupt)
pushB(worker, update)
wait(master, interrupt)
pushB(worker, deploy)

initiated

configured

restarted

registered

mdbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

initiated

configured

restarted

registered

mdbworker0:MariaDB_worker

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

master

behaviors:

common

haproxy

common

haproxy

behaviors:

bootstrapped bootstrapped

12

Decentralized execution: Concerto-D

mariadb master’s RP

pushB(master, interrupt)
pushB(master, update)
pushB(master, deploy)

mariadb worker0’s RP

pushB(worker, interrupt)
pushB(worker, update)
wait(master, interrupt)
pushB(worker, deploy)

initiated

configured

restarted

registered

mdbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

initiated

configured

restarted

registered

mdbworker0:MariaDB_worker

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

master

behaviors:

common

haproxy

common

haproxy

behaviors:

bootstrapped bootstrapped

13

Decentralized execution: Concerto-D

mariadb master’s RP

pushB(master, interrupt)
pushB(master, update)
pushB(master, deploy)

mariadb worker0’s RP

pushB(worker, interrupt)
pushB(worker, update)
wait(master, interrupt)
pushB(worker, deploy)

initiated

configured

restarted

registered

mdbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

initiated

configured

restarted

registered

mdbworker0:MariaDB_worker

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

master

behaviors:

common

haproxy

common

haproxy

behaviors:

bootstrapped bootstrapped

14

Failing example

mariadb master’s RP

pushB(master, interrupt)
pushB(master, update)
pushB(master, deploy)

mariadb worker0’s RP

pushB(worker, interrupt)
pushB(worker, update)
pushB(worker, deploy)

initiated

configured

restarted

registered

mdbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

initiated

configured

restarted

registered

mdbworker0:MariaDB_worker

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

master

behaviors:

common

haproxy

common

haproxy

behaviors:

bootstrapped bootstrapped

15

Approach for Ballet’s planner

Local resolution

• Purpose: Find a sequence of behavior to execute
• Hint: Constraint programming approach

Constraint propagation

• Purpose: Inferring wait instructions (i.e., synchro. bareer)
• Hint: Propagation based on Gossip algorithm
• Hint: Consensus using Paxos-like approach

16

CP for local planning

initiated

configured

restarted

registered

mdbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

common

haproxy

bootstrapped

Figure 6: MariaDB master
control component

1

2

3

4

5

interrupt
(1)

pause
(1)

update
(1)

uninstall
(1)

deploy
(5)

deploy
(4)

deploy
(3) state 1 2 3 4 5

common ✓ ✓ ˆ ˆ ˆ

haproxy ˆ ˆ ✓ ˆ ˆ

service ✓ ˆ ˆ ˆ ˆ

Figure 7: Automaton representation of Mariadb master
component’s life cycle with its matrix for ports statuses.

17

Message inference

Case study reconfiguration
behaviors:

- component: mariadb master
behavior: update

components:
- forall: running

Sequence := [interrupt, update, deploy]
States := [1, 2, 4, 1]

Port status :=
common: [✓, ✓, ˆ, ✓]
haproxy: [ˆ, ˆ, ˆ, ˆ]
service: [✓, ˆ, ˆ, ✓]

Must propagate constraints using messages:
• “Components using master’s common must disconnect until update ends”
ñ Message: (master, common, disconnect, update)
• “Components using master’s service must disconnect until interrupt ends”
ñ Message: (master, service, disconnect, interrupt)

18

Constraint propagation

mariadb_master

common

haproxy mariadb_worker

common

haproxy

master

mariadb

keystone

glance

nova

neutron

mariadb

keystone

keystone

mariadb
keystone

mariadb

mariadb_worker

Master node

Worker node 1 Neutron node 1

Nova node 1

Site 1
Site n
Worker node n, Nova node n,
Neutron node n

Propagated constraint (gossip + consensus) from mariadb master for master’s service

• mariadb master ñ mariadb worker
• mariadb worker ñ keystone; glance; nova; neutron
• keystone ñ glance; nova; neutron 19

Enriched CP Model

Enriched CP problem

• Enriched automaton with synchronization instruction
• Additional constraint to have synchro. barrier in local plan

1

2

3

4

5

interrupt

pause

update

uninstall

deploy

deploy

deploy

wait mariadb master interrupt

wait mariadb master interrupt

state 1 2 3 4 5

common ✓ ✓ ˆ ˆ ˆ

haproxy ˆ ˆ ✓ ˆ ˆ

master ✓ ✓ ✓ ˆ ˆ

service ✓ ˆ ˆ ˆ ˆ

Figure 8: Enriched automaton representation of Mariadb worker .

Figure 9: Caption

20

Experiments

Deployment and update of OpenStack with Galera cluster of MariaDB with n P r1, 2, 5, 10s

sites, that is a total of 7 ` 11 ˚ n components.

Metric of interest

• For both the planner and the executor: Execution time
• For the planner: Inferred constraints, inferred actions, number of communications

Setup

• Results on 1 ` 3 ˚ n nodes Gros (Nancy) of Grid’5000
• Comparison to Muse (decentralized reconfiguration)
• Reproducible example on Grid’5000

21

Experimental results

Sc. # Sites Ballet Muse GainPlanning Execution Total
D

ep
lo

y

1 1.69s 306.02s 307.71s 536.57s 42.7%
2 1.78s 306.09s 307.86s 536.69s 42.6%
5 1.77s 306.19s 307.97s 537.09s 42.7%
10 2.02s 306.14s 308.19s 538.13s 42.7%

U
pd

at
e 1 3.36s 416.84s 420.20s 555.56s 24.4%
2 4.39s 416.92s 421.31s 555.70s 24.2%
5 6.05s 417.17s 423.22s 556.08s 24.0%
10 5.97s 417.46s 423.43s 556.77s 24.0%

Table 1: Comparison of time for planning and executing a deployment and an update of the
MariaDB master instance with Ballet and Muse. 22

Experimental results

Sc. #Sites #Constraints #Instructions #Messages

D
ep

lo
y

n 7 ` 11 ˚ n 7 ` 11 ˚ n 0
1 18 18 0
2 29 29 0
5 62 62 0
10 117 117 0

U
pd

at
e

n 3 ` 20 ˚ n 8 ` 11 ˚ n 9 ˚ n
1 23 19 9
2 43 30 18
5 103 63 45
10 203 118 90

Table 2: Results of the planning phase for the deploy and update scenario when varying the number of
Mariadb workers in a Galera cluster.

23

Concluding remarks

Postdoc contributions

• Ballet and SeMaFoR project (led by Thomas Ledoux)
• Infer reconfiguration actions (CP model)
• Communication protocol
• Work under review for SANER2024

Target applications

• OpenStack, and CPS
• (SeMaFoR) Fog areas, smart cities, IoT devices, etc.

Perspectives

• Model-Driven Engineering approach for determining objectives
• Experiments on more topologies
• Formalization of Planner + Executor in Why3 for correctness

24

Backup

Ballet’s usage: Developer’s concern

Listing 2: Control component MariaDB master in Python

1 class MariaDB_Master (Component):
2 def create (self):
3 self. places = [" initiated ", " configured ", " bootstrapped ", " restarted ",
4 " registered ", " deployed ", " interrupted "]
5 self. transitions = {
6 " configure0 ": (" initiated ", " configured ", " deploy ", self. configure0),
7 " configure1 ": (" initiated ", " configured ", " deploy ", self. configure1),
8 " configure2 ": (" initiated ", " configured ", " deploy ", self. configure2),
9 ...

10 }
11 self. dependencies = {
12 " service ": (DepType .PROVIDE , [" deployed "]) ,
13 " haproxy ": (DepType .USE , [" bootstrapped "," restarted "]) ,
14 ...
15 }
16 self. initial_place = 'initiated '
17 self. running_place = 'deployed '
18

19 def configure0 (self):
20 # concrete actions 25

CP Model

1

2

3

4

5

interrupt
(1)

pause
(1)

update
(1)

uninstall
(1)

deploy
(5)

deploy
(4)

deploy
(3) state 1 2 3 4 5

common ✓ ✓ ˆ ˆ ˆ

haproxy ˆ ˆ ✓ ˆ ˆ

service ✓ ˆ ˆ ˆ ˆ

Figure 10: Automaton representation of Mariadb master
component’s life cycle with its matrix for ports statuses.

• RegularpB, Π, sinit , Sgoal q

• si`1 “ incΠrsi srbi s, @i P 1..m
• Countpb, B, ą, 0q

• statuspp, sm`1q “ Γp

where
Γp P tactive, inactiveu

ci “ costpsi , bi q, @i P 1..m
C “ Sumprci | i P 1..msq

26

Planner time

#Sites Solving Communications Total
1 1.58 (0.06) 1.78 (0.44) 3.36 (0.43)
2 1.53 (0.13) 2.85 (1.62) 4.39 (1.72)
5 1.59 (0.06) 4.47 (0.92) 6.05 (0.91)
10 2.61 (0.17) 0.26 (0.01) 5.97 (0.63)

Table 3: Average duration in seconds (and standard deviation) to calculate the plans for the update
scenario.

27

Gossip + Protocol

https://docs.google.com/presentation/d/18asPwHJ4HOZqAlmQqLEI5V-hX38_
robjgia62bNtrig/edit?usp=sharing

28

https://docs.google.com/presentation/d/18asPwHJ4HOZqAlmQqLEI5V-hX38_robjgia62bNtrig/edit?usp=sharing
https://docs.google.com/presentation/d/18asPwHJ4HOZqAlmQqLEI5V-hX38_robjgia62bNtrig/edit?usp=sharing

Full execution with failure

https://docs.google.com/presentation/d/1pe4HXdohWJyxwJHHbdmIitxnkCEN_
UEdfBWqZRvZQbc/edit?usp=sharing

29

https://docs.google.com/presentation/d/1pe4HXdohWJyxwJHHbdmIitxnkCEN_UEdfBWqZRvZQbc/edit?usp=sharing
https://docs.google.com/presentation/d/1pe4HXdohWJyxwJHHbdmIitxnkCEN_UEdfBWqZRvZQbc/edit?usp=sharing

Cyber Physical System (CPS) performance

https://docs.google.com/presentation/d/
1WwMoAma8trummqHhtNLrDV-AL7t4WSIZ7PMY5ZI-Jk0/edit?usp=sharing

30

https://docs.google.com/presentation/d/1WwMoAma8trummqHhtNLrDV-AL7t4WSIZ7PMY5ZI-Jk0/edit?usp=sharing
https://docs.google.com/presentation/d/1WwMoAma8trummqHhtNLrDV-AL7t4WSIZ7PMY5ZI-Jk0/edit?usp=sharing

	Usage of Ballet
	Ballet choreography engine
	Backup

