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Motivation

• When facing complex projects: cross-functional and cross-geographical DevOps teams
• Each team tackles a set of services and associated DevOps operations on different parts of

the project
• Each team usually use a centralized local DevOps tool with a local vision of the state of

their part
Problem
DevOps operations applied by one DevOps team can necessitate operations on other elements
tackled by other DevOps teams. This is in practice handle manually between teams as
DevOps tools apply operations in a centralized manner.

Naive solution
Using a centralized tool on top of all DevOps teams is not suitable for scale and fault
tolerance reasons.

Related work: Muse (Sokolowski et. al.)
We want to improve performances and later introduce formal aspects for reasoning 2



Case study: Deploy or update OpenStack with Galera cluster of MariaDB
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Figure 1: Assembly of a multi-site OpenStack with a Galera cluster of distributed MariaDB databases.
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Ballet overview
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Figure 2: Ballet overview

• Declarative input
• Automatic planning
• Efficient reconfiguration
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Ballet overview
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Running Ballet
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Outline
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Usage of Ballet



Ballet’s usage: Developer’s concern

• Specify components’
life-cycle (places,
transitions, ports)

• Defining components’
dependencies

ñ Scripts for
deployment or update
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Figure 5: MariaDB Master and MariaDB Worker components 8



Ballet’s usage: DevOps’s concern

Listing 1: Language to define reconfiguration goals
for DevOps usage

<goa l s> ::“ b e h a v i o r s : <b h v r l i s t >
p o r t s : <p o r t l i s t >
components : <c o m p l i s t>

<b h v r l i s t > ::“ . . .
<bhvr i t em> ::“ − f o r a l l : <bhvr name>

| − component : <comp name>
be ha v i o r : <bhvr name>

<p o r t l i s t > ::“ . . .
<p o r t i t e m> ::“ − f o r a l l : <p o r t s t a t u s >

| − component : <comp name>
por t : <port name>
s t a t u s : <p o r t s t a t u s >

<c o m p l i s t> ::“ . . .
<comp item> ::“ − f o r a l l : <comp status>

| − component : <comp name>
s t a t u s : <comp status>

Language
Declarative language for defining
reconfiguration goals
• Behavior goal: Specify a behavior that

must be executed

• Port goal: Specify a port status (active,
inactive)

• State goal: Specify a component state
(specific, running, initial)

Case study reconfiguration
behaviors:

- component: mariadb master
behavior: update

components:
- forall: running 9



Ballet choreography engine



Execution language: Concerto-D (Antoine Omond’s thesis)

Reconfiguration programs are plans which can

1. Create assemblies of components (software system)
2. Make this assembly evolve at runtime
3. Interact with the life cycle of components

The used language propose instructions for:

Add/remove a component instance to the current assembly
Connect/disconnect two component instances with compatible ports
Push behavior to the behavior queue on a component instance
Wait for a given component instance to execute a behavior
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Reconfiguration of Service oriented architecture
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ñ Infer reconfiguration local actions
ñ Coherent overall reconfiguration

Challenges

• Locally: Partial view of the system
• Need for communications decentralized operation
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Decentralized execution: Concerto-D
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Decentralized execution: Concerto-D
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Failing example
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Approach for Ballet’s planner

Local resolution

• Purpose: Find a sequence of behavior to execute
• Hint: Constraint programming approach

Constraint propagation

• Purpose: Inferring wait instructions (i.e., synchro. bareer)
• Hint: Propagation based on Gossip algorithm
• Hint: Consensus using Paxos-like approach
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CP for local planning
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Figure 6: MariaDB master
control component
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Message inference

Case study reconfiguration
behaviors:

- component: mariadb master
behavior: update

components:
- forall: running

Sequence := [interrupt, update, deploy]
States := [1, 2, 4, 1]

Port status :=
common: [✓, ✓, ˆ, ✓]
haproxy: [ˆ, ˆ, ˆ, ˆ]
service: [✓, ˆ, ˆ, ✓]

Must propagate constraints using messages:
• “Components using master’s common must disconnect until update ends”
ñ Message: (master, common, disconnect, update)
• “Components using master’s service must disconnect until interrupt ends”
ñ Message: (master, service, disconnect, interrupt)
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Constraint propagation
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Propagated constraint (gossip + consensus) from mariadb master for master’s service

• mariadb master ñ mariadb worker
• mariadb worker ñ keystone; glance; nova; neutron
• keystone ñ glance; nova; neutron 19



Enriched CP Model

Enriched CP problem

• Enriched automaton with synchronization instruction
• Additional constraint to have synchro. barrier in local plan
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Figure 8: Enriched automaton representation of Mariadb worker .

Figure 9: Caption
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Experiments

Deployment and update of OpenStack with Galera cluster of MariaDB with n P r1, 2, 5, 10s

sites, that is a total of 7 ` 11 ˚ n components.

Metric of interest

• For both the planner and the executor: Execution time
• For the planner: Inferred constraints, inferred actions, number of communications

Setup

• Results on 1 ` 3 ˚ n nodes Gros (Nancy) of Grid’5000
• Comparison to Muse (decentralized reconfiguration)
• Reproducible example on Grid’5000

21



Experimental results

Sc. # Sites Ballet Muse GainPlanning Execution Total
D

ep
lo

y

1 1.69s 306.02s 307.71s 536.57s 42.7%
2 1.78s 306.09s 307.86s 536.69s 42.6%
5 1.77s 306.19s 307.97s 537.09s 42.7%
10 2.02s 306.14s 308.19s 538.13s 42.7%

U
pd

at
e 1 3.36s 416.84s 420.20s 555.56s 24.4%
2 4.39s 416.92s 421.31s 555.70s 24.2%
5 6.05s 417.17s 423.22s 556.08s 24.0%
10 5.97s 417.46s 423.43s 556.77s 24.0%

Table 1: Comparison of time for planning and executing a deployment and an update of the
MariaDB master instance with Ballet and Muse. 22



Experimental results

Sc. #Sites #Constraints #Instructions #Messages

D
ep

lo
y

n 7 ` 11 ˚ n 7 ` 11 ˚ n 0
1 18 18 0
2 29 29 0
5 62 62 0
10 117 117 0

U
pd

at
e

n 3 ` 20 ˚ n 8 ` 11 ˚ n 9 ˚ n
1 23 19 9
2 43 30 18
5 103 63 45
10 203 118 90

Table 2: Results of the planning phase for the deploy and update scenario when varying the number of
Mariadb workers in a Galera cluster.
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Concluding remarks

Postdoc contributions

• Ballet and SeMaFoR project (led by Thomas Ledoux)
• Infer reconfiguration actions (CP model)
• Communication protocol
• Work under review for SANER2024

Target applications

• OpenStack, and CPS
• (SeMaFoR) Fog areas, smart cities, IoT devices, etc.

Perspectives

• Model-Driven Engineering approach for determining objectives
• Experiments on more topologies
• Formalization of Planner + Executor in Why3 for correctness
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Ballet’s usage: Developer’s concern

Listing 2: Control component MariaDB master in Python

1 class MariaDB_Master ( Component ):
2 def create (self):
3 self. places = [ " initiated ", " configured ", " bootstrapped ", " restarted ",
4 " registered ", " deployed ", " interrupted "]
5 self. transitions = {
6 " configure0 ": (" initiated ", " configured ", " deploy ", self. configure0 ),
7 " configure1 ": (" initiated ", " configured ", " deploy ", self. configure1 ),
8 " configure2 ": (" initiated ", " configured ", " deploy ", self. configure2 ),
9 ...

10 }
11 self. dependencies = {
12 " service ": ( DepType .PROVIDE , [" deployed "]) ,
13 " haproxy ": ( DepType .USE , [" bootstrapped "," restarted "]) ,
14 ...
15 }
16 self. initial_place = 'initiated '
17 self. running_place = 'deployed '
18

19 def configure0 (self):
20 # concrete actions 25



CP Model

1

2

3

4

5

interrupt
(1)

pause
(1)

update
(1)

uninstall
(1)

deploy
(5)

deploy
(4)

deploy
(3) state 1 2 3 4 5

common ✓ ✓ ˆ ˆ ˆ

haproxy ˆ ˆ ✓ ˆ ˆ

service ✓ ˆ ˆ ˆ ˆ

Figure 10: Automaton representation of Mariadb master
component’s life cycle with its matrix for ports statuses.

• RegularpB, Π, sinit , Sgoal q

• si`1 “ incΠrsi srbi s, @i P 1..m
• Countpb, B, ą, 0q

• statuspp, sm`1q “ Γp

where
Γp P tactive, inactiveu

ci “ costpsi , bi q, @i P 1..m
C “ Sumprci | i P 1..msq
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Planner time

#Sites Solving Communications Total
1 1.58 (0.06) 1.78 (0.44) 3.36 (0.43)
2 1.53 (0.13) 2.85 (1.62) 4.39 (1.72)
5 1.59 (0.06) 4.47 (0.92) 6.05 (0.91)
10 2.61 (0.17) 0.26 (0.01) 5.97 (0.63)

Table 3: Average duration in seconds (and standard deviation) to calculate the plans for the update
scenario.
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Gossip + Protocol

https://docs.google.com/presentation/d/18asPwHJ4HOZqAlmQqLEI5V-hX38_
robjgia62bNtrig/edit?usp=sharing
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Full execution with failure

https://docs.google.com/presentation/d/1pe4HXdohWJyxwJHHbdmIitxnkCEN_
UEdfBWqZRvZQbc/edit?usp=sharing
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Cyber Physical System (CPS) performance

https://docs.google.com/presentation/d/
1WwMoAma8trummqHhtNLrDV-AL7t4WSIZ7PMY5ZI-Jk0/edit?usp=sharing
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