
Towards High-Level Models
for Cloud Computing Systems

13th of December, 2023

Journées VELVET @ IMT Atlantique

Simon Bliudze, Inria Lille

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Satellite software design
A collaboration with the EPFL Space Engineering Center

Component-based design in BIP of the control software for a nano-satellite
Control and Data Management System (CDMS)
Communication with other subsystems through an I2C bus

A collaboration with ThalesAlenia Space (France) and
Aristotle University of Thessaloniki (Greece)

“Catalogue of System and Software Properties”
Funded by ESA

3

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

CubETH: CDMS architecture

4

RIGOROUS SOFTWARE DESIGN FOR NANO AND
MICRO SATELLITES USING BIP FRAMEWORK

Issue: 1 Rev: 1
Date: September 14, 2014
Page: 13 of 88

• The CDMS shall respect the timing requirements from TABLE 1.

Figure 1: Simplified CDMS hardware and connections. CS means "Chip select"

Table 1: CDMS time requirements for task execution

Task Period
Command scheduling 500 ms
Sensor data handling 500 ms

Scientific data handling 1 s
Housekeeping data handling 1-5 s

ADCS algorithm 3 s

(figure courtesy of Marco Pagnamenta)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

CubETH: CDMS architecture

5(figure courtesy of Marco Pagnamenta)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

CubETH: CDMS architecture

5

HK_PL = Payload Housekeeping
Periodically collect data from the PL subsystem
LoS ? send to Ground Control : store in memory

(figure courtesy of Marco Pagnamenta)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27 6
8

Example 1
8

Example 1

(slide courtesy of Marco Pagnamenta)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27 6
8

Example 1
8

Example 1

(slide courtesy of Marco Pagnamenta)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Rigorous System Design flow

7

• User	requirements	
• Model	in	any	other	
supported	formalism	

BIP	model	
instan9a9on	

• Applica9on	model	in	
BIP	
• Pla<orm	architecture	
• Mapping	

Model	
transforma9on	 • Abstract	system	

model	in	BIP	
• Communica9on	
primi9ves	

Model	
transforma9on	

• Concrete	system	
model	in	BIP	

Code	
genera9on	 • Generated	code	

Simula9on	and	
execu9on	

A series of semantics-preserving transformations
Correctness decomposed into

correctness of transformations
correctness of high-level models

Final implementation is correct by construction

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Rigorous System Design flow

7

• User	requirements	
• Model	in	any	other	
supported	formalism	

BIP	model	
instan9a9on	

• Applica9on	model	in	
BIP	
• Pla<orm	architecture	
• Mapping	

Model	
transforma9on	 • Abstract	system	

model	in	BIP	
• Communica9on	
primi9ves	

Model	
transforma9on	

• Concrete	system	
model	in	BIP	

Code	
genera9on	 • Generated	code	

Simula9on	and	
execu9on	

A series of semantics-preserving transformations
Correctness decomposed into

correctness of transformations
correctness of high-level models

Final implementation is correct by construction

☐Unifying modelling
framework

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Rigorous System Design flow

7

• User	requirements	
• Model	in	any	other	
supported	formalism	

BIP	model	
instan9a9on	

• Applica9on	model	in	
BIP	
• Pla<orm	architecture	
• Mapping	

Model	
transforma9on	 • Abstract	system	

model	in	BIP	
• Communica9on	
primi9ves	

Model	
transforma9on	

• Concrete	system	
model	in	BIP	

Code	
genera9on	 • Generated	code	

Simula9on	and	
execu9on	

A series of semantics-preserving transformations
Correctness decomposed into

correctness of transformations
correctness of high-level models

Final implementation is correct by construction

☐Unifying modelling
framework

☐Operational semantics

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Rigorous System Design flow

7

• User	requirements	
• Model	in	any	other	
supported	formalism	

BIP	model	
instan9a9on	

• Applica9on	model	in	
BIP	
• Pla<orm	architecture	
• Mapping	

Model	
transforma9on	 • Abstract	system	

model	in	BIP	
• Communica9on	
primi9ves	

Model	
transforma9on	

• Concrete	system	
model	in	BIP	

Code	
genera9on	 • Generated	code	

Simula9on	and	
execu9on	

A series of semantics-preserving transformations
Correctness decomposed into

correctness of transformations
correctness of high-level models

Final implementation is correct by construction

☐Unifying modelling
framework

☐Operational semantics

☐Method(s) to design
correct models

/ 27 S.Bliudze @ Journées VELVET, 13th of December, 2023

Embedded systems

Cloud computing systems

8

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Rigorous System Design flow

9

• User	requirements	
• Model	in	any	other	
supported	formalism	

BIP	model	
instan9a9on	

• Applica9on	model	in	
BIP	
• Pla<orm	architecture	
• Mapping	

Model	
transforma9on	 • Abstract	system	

model	in	BIP	
• Communica9on	
primi9ves	

Model	
transforma9on	

• Concrete	system	
model	in	BIP	

Code	
genera9on	 • Generated	code	

Simula9on	and	
execu9on	

A series of semantics-preserving transformations
Correctness decomposed into

correctness of transformations
correctness of high-level models

Final implementation is correct by construction

☐Unifying modelling
framework

☐Operational semantics

☐Method(s) to design
correct models

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Example: Synthesis from Feature Models

10

Salman Farhat
[COORDINATION 2023]

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Reconfiguration

11(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Configuration validity

12(slide courtesy of Salman Farhat)

at most

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Existing approaches

13(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Approach overview

14(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Run-time Component-Based Variability Model

15(figures courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Run-time Component-Based Variability Model

15(figures courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Glue generation

16(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Feature activation

17(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

At run time

18(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

At run time

18(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

At run time

18(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

At run time

18(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

At run time

18(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

At run time

18(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

At run time

18(slide courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Experimental evaluation

Safely manage the reconfiguration of concurrent component-based
applications at runtime

Minimize computational overhead

19(figures courtesy of Salman Farhat)

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27 20

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Rigorous System Design flow

21

• User	requirements	
• Model	in	any	other	
supported	formalism	

BIP	model	
instan9a9on	

• Applica9on	model	in	
BIP	
• Pla<orm	architecture	
• Mapping	

Model	
transforma9on	 • Abstract	system	

model	in	BIP	
• Communica9on	
primi9ves	

Model	
transforma9on	

• Concrete	system	
model	in	BIP	

Code	
genera9on	 • Generated	code	

Simula9on	and	
execu9on	

A series of semantics-preserving transformations
Correctness decomposed into

correctness of transformations
correctness of high-level models

Final implementation is correct by construction

☐Unifying modelling
framework

☐Operational semantics

☐Method(s) to design
correct models

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

SmartCloud
ANR PRCE project

42 months starting the 15th of January 2024

Inria Lille
Simon Bliudze, Philippe Merle

University of Bologna (Inria Sophia-Antipolis)
Gianluigi Zavattaro, Saverio Giallorenzo, Ivan Lanese

Scalair (Cloud provider and operator)
Damien Vignault et al

22

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Objectives
Flexible infrastructure for the design of smart and
coordinated dynamic adaptation frameworks for CC systems

New formalism for joint modelling of platform and application aspects,
providing mechanisms for dynamic adaptation

monitoring
coordination
control

New algorithms and heuristics for distributed on-line
optimisation

23

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

SmartCloud

WP1: Design framework

WP2: Dynamic adaptation planning

WP3: Prototyping and integration

WP4: Evaluation

24

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

WP1: Design framework

Two models allowing for the representation of both the inter-
dependencies/interactions among CC system components and the
computing resources required by each component

25

Monitor

KPI

Local
adaptation
controller

Physical
server

Virtual
machine

Microservice

Legend

Cloud

Global
adaptation
controller

Knowledge
Base

Domain

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

WP2: Dynamic adaptation planning

Hybrid techniques for the automatic deployment of CC systems,
combining optimisation with heuristics

compute at the global level an appropriate partitioning of software entities and resources
allocate each sub-set of resources to a local controller

26

Architecture

Global
 Knowledge Base

Infrastructure

Partitioning

P1 P2 P3

D1 D2 D3

Global
adaptation

D1

D3

Monitoring

Local adaptation

Monitor can trigger global adaptation

Feed Knowledge

D2

ht
tp

s:
//w

ww
.p

ur
at

ur
a.

co
m

/a
rc

hi
ve

s/
po

rtf
ol

io
/it

em
s/

i-w
an

t-y
ou

-fo
r-s

ci
en

ce

A post-doc in Lille
WP 1: Design framework
12 months

1-2 post-doc(s) in Bologna
WP 1,2: Dynamic adaptation planning
24 months

An engineer in Lille
WP 3: Prototyping and integration
18 months

We will be hiring

https://www.puratura.com/archives/portfolio/items/i-want-you-for-science

/ 27 S.Bliudze @ Journées VELVET, 13th of December, 2023

Appendices

28

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

JavaBIP components

29

10 S. BLIUDZE ET AL.

1 @Ports({
2 @Port(name = "add", type = PortType.enforceable),
3 @Port(name = "rm", type = PortType.enforceable)
4 })
6 @ComponentType(initial = "on", name = "MemoryMonitor")
7 public class MemoryMonitor {
8
9 final private int memoryLimit;

10 private int currentCapacity = 0;
11
12 public MemoryMonitor(int memoryLimit) {
13 this.memoryLimit = memoryLimit;
14 }
15
16 @Transition(name = "add", source = "on", target = "on",
17 guard = "hasCapacity")
18 public void addRoute(@Data("memoryUsage") Integer deltaMemory) {
19 currentCapacity += deltaMemory;
20 }
21
22 @Transition(name = "rm", source = "on", target = "on", guard = "")
23 public void removeRoute(@Data(name="memoryUsage") Integer deltaMemory) {
24 currentCapacity -= deltaMemory;
25 }
26
27 @Guard(name = "hasCapacity")
28 public boolean hasCapacity(@Data("memoryUsage") Integer memoryUsage) {
29 return currentCapacity + memoryUsage < memoryLimit;
30 }
31 }

Figure 5. Annotations for the Monitor component type.

Figure 6. JavaBIP models of a publish-subscribe server.

The server consists of components of the six types shown in Figure 6. For each client, there
is a dedicated TCPReader, responsible for receiving commands from the client. Additionally, for
each client there is dedicated a ClientProxy, responsible for receiving acknowledgements that the
client has been added or removed from a topic and messages published from other clients registered
in the same topics. registered in the same topic. Upon reception by a TCPReader, each command
is forwarded to the unique CommandBuffer component through the synchronization of the give
and put enforceable transitions. The guard commandExists of the TCPReader is used to check
whether it has received a new command and the guard notFull of the CommandBuffer is used
to check whether the buffer is not full before receiving a new command (Figure 7: lines 29–30). If
both guards evaluate to true, the command is transferred as data to the CommandBuffer (Figure 7:
line 25).

The CommandBuffer is a passive component: the responsibility for retrieving commands from the
CommandBuffer belongs to CommandHandlers. This happens through the synchronization of the
handle and get enforceable transitions, when the notEmpty guard evaluates to true (Figure 7:
lines 21–22). There can be arbitrarily many CommandHandlers that are concurrently handling
commands. The CommandHandlers asynchronously forward commands to the TopicManager, by
generating the event associated to the execute spontaneous transition of the TopicManager

Copyright c� 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
Prepared using speauth.cls DOI: 10.1002/spe

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

JavaBIP glue

30

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

JavaBIP–Cloud integration

31

S.Bliudze @ Journées VELVET, 13th of December, 2023 / 27

Exclude constraints

32(slide courtesy of Salman Farhat)

